Ablative Rayleigh-Taylor instability driven by time-varying acceleration

被引:1
|
作者
Banerjee, Rahul [1 ]
机构
[1] St Pauls Cathedral Mission Coll, 33-1, Raja Rammohan Roy Sarani, Kolkata 700009, India
关键词
Nonlinear growth; Bubble; Vorticity; Quasiconstant acceleration; Atwood number; Gravitational force;
D O I
10.1007/s12648-023-02755-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, the asymptotic nonlinear behavior of the Rayleigh-Taylor hydrodynamic instability driven by time dependent variable accelerations of the form g(1 - e(-t/T)) and g(1 - e(-t/T))(1 + cos mu t) has been reported simultaneously. The nonlinear model based on potential flow theory has been extended to describe the effect of afore mentioned accelerations with vorticity generation inside the bubble. It is seen that the asymptotic growth rate and curvature of the tip of the bubble like interface tends to a finite saturation value and depends on the parameters T and mu. Also, an oscillatory behavior is observed for the acceleration g(1 - e(-t/T)) (1 + cos mu t). Such time-dependent accelerations are a representative of the flow conditions in several applications including Inertial Confinement Fusion, type la supernova and several Rayleigh-Taylor experiments.
引用
收藏
页码:4365 / 4371
页数:7
相关论文
共 50 条
  • [31] A Turbulent Heliosheath Driven by the Rayleigh-Taylor Instability
    Opher, M.
    Drake, J. F.
    Zank, G.
    Powell, E.
    Shelley, W.
    Kornbleuth, M.
    Florinski, V
    Izmodenov, V
    Giacalone, J.
    Fuselier, S.
    Dialynas, K.
    Loeb, A.
    Richardson, J.
    ASTROPHYSICAL JOURNAL, 2021, 922 (02):
  • [32] Analytical model of the ablative Rayleigh-Taylor instability in the deceleration phase
    Sanz, J
    Bettti, R
    PHYSICS OF PLASMAS, 2005, 12 (04) : 1 - 12
  • [33] Effect of preheating on the nonlinear evolution of the ablative Rayleigh-Taylor instability
    Ye, W. H.
    He, X. T.
    Zhang, W. Y.
    Yu, M. Y.
    EPL, 2011, 96 (03)
  • [34] Comprehensive diagnosis of growth rates of the ablative Rayleigh-Taylor instability
    Azechi, H.
    Sakaiya, T.
    Fujioka, S.
    Tamari, Y.
    Otani, K.
    Shigemori, K.
    Nakai, M.
    Shiraga, H.
    Miyanaga, N.
    Mima, K.
    PHYSICAL REVIEW LETTERS, 2007, 98 (04)
  • [35] The analysis of harmonic generation coefficients in the ablative Rayleigh-Taylor instability
    Lu, Yan
    Fan, Zhengfeng
    Lu, Xinpei
    Ye, Wenhua
    Zou, Changlin
    Zhang, Ziyun
    Zhang, Wen
    PHYSICS OF PLASMAS, 2017, 24 (10)
  • [36] Turbulent Rayleigh-Taylor instability experiments with variable acceleration
    Dimonte, G
    Schneider, M
    PHYSICAL REVIEW E, 1996, 54 (04): : 3740 - 3743
  • [37] Experimental comparison of classical versus ablative Rayleigh-Taylor instability
    Budil, KS
    Remington, BA
    Peyser, TA
    Mikaelian, KO
    Miller, PL
    Woolsey, NC
    WoodVasey, WM
    Rubenchik, AM
    PHYSICAL REVIEW LETTERS, 1996, 76 (24) : 4536 - 4539
  • [38] RAYLEIGH-TAYLOR INSTABILITY IN THE INCOMPRESSIBLE SHELL WITH ALLOWANCE FOR ABLATIVE STABILIZATION
    LEBO, IG
    ROZANOV, VB
    LASER AND PARTICLE BEAMS, 1994, 12 (03) : 379 - 386
  • [39] RAYLEIGH-TAYLOR INSTABILITY
    PLESSET, MS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (11): : 1095 - 1095
  • [40] RAYLEIGH-TAYLOR INSTABILITY
    BABENKO, KI
    PETROVICH, VI
    DOKLADY AKADEMII NAUK SSSR, 1979, 245 (03): : 551 - 554