On the Diophantine equation ax

被引:0
|
作者
Viriyapong, Chokchai [1 ]
Viriyapong, Nongluk [1 ]
机构
[1] Mahasarakham Univ, Dept Math, Math & Appl Math Res Unit, Maha Sarakham 44150, Thailand
关键词
Diophantine equation; congruence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we show that the Diophantine equation ax + (a + 2)y = z2 has no non-negative integer solution where a is an element of Z+ such that a -28 19.
引用
收藏
页码:449 / 451
页数:3
相关论文
共 50 条
  • [21] ON THE DIOPHANTINE EQUATION y(2) = px(Ax(2) - 2)
    Yuan, Pingzhi
    Li, Yuan
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2009, 14 (02): : 185 - 190
  • [22] DIOPHANTINE EQUATION AX-(A+1)Y=+-1
    EDGAR, HM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (04): : 612 - &
  • [23] A Conjecture Concerning the Pure Exponential Diophantine Equation ax + by = cz
    Mao Hua Le
    Acta Mathematica Sinica, 2005, 21 : 943 - 948
  • [24] Application of quartic residue character theory to the Diophantine equation ax + by = cz
    Deng, Mou-Jie
    Guo, Jin
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2019, 62 (02): : 133 - 139
  • [25] On the Diophantine Equations ax
    Laipaporn, Kittipong
    Kaewchay, Saowapak
    Karnbanjong, Adisak
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (04): : 2066 - 2081
  • [26] EXPONENTIAL DIOPHANTINE EQUATION 1+A+A2+...+AX-1-PY
    EDGAR, HM
    AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (07): : 758 - 759
  • [27] A study on the exponential Diophantine equation ax + (a plus b)y = bz
    Miyazaki, Takafumi
    Terai, Nobuhiro
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 95 (1-2): : 19 - 37
  • [28] THE DIOPHANTINE EQUATION AX3+BY3+CZ3=0
    SELMER, ES
    ACTA MATHEMATICA, 1951, 85 (04) : 203 - 361
  • [29] An open problem concerning the diophantine equation ax+bx=cz
    Le, MH
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2006, 68 (3-4): : 283 - 295
  • [30] DIOPHANTINE EQUATION AX4+BY4+CZ4=O
    MORDELL, LJ
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1970, 68 : 125 - &