HJB equation for optimal control system with random impulses

被引:26
|
作者
Guo, Yu [1 ]
Shu, Xiao-Bao [1 ]
Xu, Fei [2 ]
Yang, Cheng [1 ]
机构
[1] Hunan Univ, Sch Math, Changsha, Hunan, Peoples R China
[2] Wilfrid Laurier Univ, Dept Math, Waterloo, ON, Canada
关键词
HJB equation; random impulse; viscosity solution; optimal control; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.1080/02331934.2022.2154607
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper studies the optimal control problem of random impulsive differential equations. Based on the influence of random impulse generation, we define a more reasonable performance index by setting the random function and obtain the HJB equation of random impulse. Using the basic analysis method and stochastic process theory, we prove that the value function satisfies the random impulse HJB equation, and the value function is the viscosity solution of the random impulse HJB. As an application, we present an example of optimal feedback control.
引用
收藏
页码:1303 / 1327
页数:25
相关论文
共 50 条
  • [41] Random semilinear system of differential equations with impulses
    Baliki A.
    Nieto J.
    Ouahab A.
    Sinacer M.
    Fixed Point Theory and Applications, 2017 (1)
  • [42] OPTIMAL CONTROL OF DYNAMICAL SYSTEMS WITH POLYNOMIAL IMPULSES
    Goncharova, Elena
    Staritsyn, Maxim
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (09) : 4367 - 4384
  • [43] STOCHASTIC OPTIMAL CONTROL WITH DELAY IN THE CONTROL I: SOLVING THE HJB EQUATION THROUGH PARTIAL SMOOTHING, AND STOCHASTIC OPTIMAL CONTROL WITH DELAY IN THE CONTROL II: VERIFICATION THEOREM AND OPTIMAL FEEDBACKS (vol 55, pg 2981, 2017)
    Gozzi, Fausto
    Masiero, Federica
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (04) : 3096 - 3101
  • [44] PNLMS-based Algorithm for Online Approximated Solution of HJB Equation in the Context of Discrete MIMO Optimal Control and Reinforcement Learning
    Silva, Marcio Eduardo G.
    da Fonseca Neto, Joao Viana
    Chagas de Souza, Francisco das
    2014 UKSIM-AMSS 16TH INTERNATIONAL CONFERENCE ON COMPUTER MODELLING AND SIMULATION (UKSIM), 2014, : 69 - 76
  • [45] Optimal nonlinear filter to remove random impulses from Gaussian noise
    Notley, SV
    Harte, JM
    Elliott, SJ
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 1541 - 1544
  • [46] Temporal Parallelisation of the HJB Equation and Continuous-Time Linear Quadratic Control
    Särkkä, Simo
    García-Fernández, Ángel F.
    arXiv, 2022,
  • [47] On control system with multivalued impulses and delay
    Malyutina, E. V.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2012, (01): : 92 - 93
  • [48] OPTIMAL-CONTROL OF PARAMETER DISTRIBUTED SYSTEMS WITH IMPULSES
    ANITA, S
    APPLIED MATHEMATICS AND OPTIMIZATION, 1994, 29 (01): : 93 - 107
  • [49] HJB Optimal Feedback Control with Deep Differential Value Functions and Action Constraints
    Lutter, Michael
    Belousov, Boris
    Listmann, Kim
    Clever, Debora
    Peters, Jan
    CONFERENCE ON ROBOT LEARNING, VOL 100, 2019, 100
  • [50] OPTIMAL IMPULSE CONTROL PROBLEM WITH CONSTRAINED NUMBER OF IMPULSES
    MILLER, BM
    RUBINOVICH, EJ
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1992, 34 (01) : 23 - 49