The Cobalt Supply Chain and Environmental Life Cycle Impacts of Lithium-Ion Battery Energy Storage Systems

被引:3
|
作者
Das, Jani [1 ]
Kleiman, Andrew [2 ]
Rehman, Atta Ur [1 ]
Verma, Rahul [3 ]
Young, Michael H. [1 ]
机构
[1] Univ Texas Austin, Jackson Sch Geosci, Bur Econ Geol, Austin, TX 78712 USA
[2] Univ Texas Austin, Jackson Sch Geosci, Energy & Earth Resources Grad Program, Austin, TX 78712 USA
[3] Fractal Business Analyt LLC, Austin, TX 78735 USA
关键词
life cycle assessment; cobalt; supply chain; lithium-ion batteries; environmental sustainability; PLUG-IN HYBRID; NICKEL; METALS;
D O I
10.3390/su16051910
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lithium-ion batteries (LIBs) deployed in battery energy storage systems (BESS) can reduce the carbon intensity of the electricity-generating sector and improve environmental sustainability. The aim of this study is to use life cycle assessment (LCA) modeling, using data from peer-reviewed literature and public and private sources, to quantify environmental impacts along the supply chain for cobalt, a crucial component in many types of LIBs. The study seeks to understand where in the life cycle stage the environmental impacts are highest, thus highlighting actions that can be taken to improve sustainability of the LIB supply chain. The system boundary for this LCA is cradle-to-gate. Impact assessment follows ReCiPe Midpoint (H) 2016. We assume a 30-year modeling period, with augmentation occurring at the end of the 3rd, 7th, and 14th years of operations, before a complete replacement in the 21st year. Three refinery locations (China, Canada, and Finland), a range of ore grades, and five battery chemistries (NMC111, NMC532, NMC622, NMC811, and NCA) are used in scenarios to better estimate their effect on the life cycle impacts. Insights from the study are that impacts along nearly all pathways increase according to an inverse power-law relationship with ore grade; refining outside of China can reduce global warming potential (GWP) by over 12%; and GWP impacts for cobalt used in NCA and other NMC battery chemistries are 63% and 45-74% lower than in NMC111, respectively. When analyzed on a single-score basis, marine and freshwater ecotoxicity are prominent. For an ore grade of 0.3%, the GWP values for the Canada route decrease at a rate of 58% to 65%, and those for Finland route decrease by 71% to 76% from the base case. Statistical analysis shows that cobalt content in the battery is the highest predictor (R2 = 0.988), followed by the ore grade (R2 = 0.966) and refining location (R2 = 0.766), when assessed for correlation individually. The results presented here point to areas where environmental burdens of LIBs can be reduced, and thus they are helpful to policy and investment decision makers.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Comparative Life Cycle Assessment of Mobile Power Banks with Lithium-Ion Battery and Lithium-Ion Polymer Battery
    Yang, Jie
    Gu, Fu
    Guo, Jianfeng
    Chen, Bin
    SUSTAINABILITY, 2019, 11 (19)
  • [22] Advances and perspectives in fire safety of lithium-ion battery energy storage systems
    Jia, Zhuangzhuang
    Jin, Kaiqiang
    Mei, Wenxin
    Qin, Peng
    Sun, Jinhua
    Wang, Qingsong
    ETRANSPORTATION, 2025, 24
  • [23] Effect of Operating Strategies on the Longevity of Lithium-ion Battery Energy Storage Systems
    Tian, Yuting
    Bera, Atri
    Mitra, Joydeep
    Chalamala, Babu
    Byrne, Raymond H.
    2018 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING (IAS), 2018,
  • [24] Aging aware operation of lithium-ion battery energy storage systems: A review
    Collath, Nils
    Tepe, Benedikt
    Englberger, Stefan
    Jossen, Andreas
    Hesse, Holger
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [25] Studying Abuse Testing on Lithium-Ion Battery Packaging for Energy Storage Systems
    Gotz, Joelton Deonei
    Machado Neto, Joao Eustaquio
    Galvao, Jose Rodolfo
    Marques, Taysa Millena Banik
    Siqueira, Hugo Valadares
    Viana, Emilson Ribeiro
    Marinho, Manoel H. N.
    Mohamed, Mohamed A.
    Ilinca, Adrian
    Correa, Fernanda Cristina
    Borsato, Milton
    SUSTAINABILITY, 2023, 15 (15)
  • [26] Supply risks of lithium-ion battery materials: An entire supply chain estimation
    Sun, Xin
    Hao, Han
    Hartmann, Philipp
    Liu, Zongwei
    Zhao, Fuquan
    MATERIALS TODAY ENERGY, 2019, 14
  • [27] Effects of the energy transition on environmental impacts of cobalt supply: A prospective life cycle assessment study on future supply of cobalt
    van der Meide, Marc
    Harpprecht, Carina
    Northey, Stephen
    Yang, Yongxiang
    Steubing, Bernhard
    JOURNAL OF INDUSTRIAL ECOLOGY, 2022, 26 (05) : 1631 - 1645
  • [28] Ex-ante life cycle evaluation of spent lithium-ion battery recovery: Modeling of complex environmental and economic impacts
    Xiao, Jiefeng
    Lu, Jiaqi
    Niu, Bo
    Liu, Xiaohua
    Hong, Junming
    Xu, Zhenming
    ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY, 2025, 23
  • [29] Life Cycle Assessment of a Lithium-Ion Battery Vehicle Pack
    Ellingsen, Linda Ager-Wick
    Majeau-Bettez, Guillaume
    Singh, Bhawna
    Srivastava, Akhilesh Kumar
    Valoen, Lars Ole
    Stromman, Anders Hammer
    JOURNAL OF INDUSTRIAL ECOLOGY, 2014, 18 (01) : 113 - 124
  • [30] Quantifying the life-cycle health impacts of a cobalt-containing lithium-ion battery (vol 27, pg 1106, 2022)
    Arvidsson, Rickard
    Chordia, Mudit
    Nordelof, Anders
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2023, 28 (09): : 1223 - 1224