Physics-driven universal twin-image removal network for digital in-line holographic microscopy

被引:13
|
作者
Rogalski, Mikolaj [1 ]
Arcab, Piotr [1 ]
Stanaszek, Luiza [2 ]
Mico, Vicente [3 ]
Zuo, Chao [4 ,5 ,6 ]
Trusiak, Maciej [1 ]
机构
[1] Warsaw Univ Technol, Inst Micromech & Photon, 8 Sw A Boboli St, PL-02525 Warsaw, Poland
[2] Mossakowski Med Res Inst, Polish Acad Sci, NeuroRepair Dept, 5 APawlinskiego St, PL-02106 Warsaw, Poland
[3] Univ Valencia, Dept Opt & Optometria & Ciencias Vis, C Doctor Moliner 50, Burjassot 46100, Spain
[4] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Smart Computat Imaging Lab SCILab, Nanjing 210094, Jiangsu, Peoples R China
[5] Nanjing Univ Sci & Technol, Smart Computat Imaging Res Inst SCIRI, Nanjing 210019, Jiangsu, Peoples R China
[6] Jiangsu Key Lab Spectral Imaging & Intelligent Sen, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
WIDE-FIELD; PHASE; ALGORITHMS;
D O I
10.1364/OE.505440
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Digital in-line holographic microscopy (DIHM) enables efficient and cost-effective computational quantitative phase imaging with a large field of view, making it valuable for studying cell motility, migration, and bio-microfluidics. However, the quality of DIHM reconstructions is compromised by twin-image noise, posing a significant challenge. Conventional methods for mitigating this noise involve complex hardware setups or time-consuming algorithms with often limited effectiveness. In this work, we propose UTIRnet, a deep learning solution for fast, robust, and universally applicable twin-image suppression, trained exclusively on numerically generated datasets. The availability of open-source UTIRnet codes facilitates its implementation in various DIHM systems without the need for extensive experimental training data. Notably, our network ensures the consistency of reconstruction results with input holograms, imparting a physics-based foundation and enhancing reliability compared to conventional deep learning approaches. Experimental verification was conducted among others on live neural glial cell culture migration sensing, which is crucial for neurodegenerative disease research.
引用
收藏
页码:742 / 761
页数:20
相关论文
共 50 条
  • [41] GRIN-lens-based in-line digital holographic microscopy
    Khorshad, Ali Akbar
    Devaney, Nicholas
    APPLIED OPTICS, 2023, 62 (10) : D131 - D137
  • [42] Characterization of photoinduced periodic microstructures by digital in-line holographic microscopy
    Peruhov, I. T.
    Mihaylova, E. M.
    BULGARIAN CHEMICAL COMMUNICATIONS, 2016, 48 : 67 - 70
  • [43] Micropipe flow visualization using digital in-line holographic microscopy
    Verrier, Nicolas
    Remacha, Clement
    Brunel, Marc
    Lebrun, Denis
    Coetmellec, Sebastien
    OPTICS EXPRESS, 2010, 18 (08): : 7807 - 7819
  • [44] Reconstruction algorithms applied to in-line Gabor digital holographic microscopy
    Molony, Karen M.
    Hennelly, Bryan M.
    Kelly, Damien P.
    Naughton, Thomas J.
    OPTICS COMMUNICATIONS, 2010, 283 (06) : 903 - 909
  • [45] In-depth imaging of dielectrophoresis by digital in-line holographic microscopy
    Haapalainen, Mikko
    Kaikkonen, Ville
    Makynen, Anssi
    EUROSENSORS XXIV CONFERENCE, 2010, 5 : 1336 - 1339
  • [46] Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints
    Koren, Gabriel
    Polack, Francois
    Joyeux, Denis
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1993, 10 (03): : 423 - 433
  • [47] ITERATIVE ALGORITHMS FOR TWIN-IMAGE ELIMINATION IN IN-LINE HOLOGRAPHY USING FINITE-SUPPORT CONSTRAINTS
    KOREN, G
    POLACK, F
    JOYEUX, D
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (03): : 423 - 433
  • [48] DH-GAN: a physics-driven untrained generative adversarial network for holographic imaging
    Chen X.
    Wang H.
    Razi A.
    Kozicki M.
    Mann C.
    Optics Express, 2023, 31 (06) : 10114 - 10235
  • [49] A new wavelet-based reconstruction algorithm for twin image removal in digital in-line holography
    Hattay, Jamel
    Belaid, Samir
    Aguili, Taoufik
    Lebrun, Denis
    OPTICS AND LASERS IN ENGINEERING, 2016, 82 : 159 - 172
  • [50] Digital in-line holographic microscopy with partially coherent light: micrometer resolution
    Alvarez-Palacio, D.
    Garcia-Sucerquia, J.
    REVISTA MEXICANA DE FISICA, 2010, 56 (06) : 445 - 448