Physics-driven universal twin-image removal network for digital in-line holographic microscopy

被引:13
|
作者
Rogalski, Mikolaj [1 ]
Arcab, Piotr [1 ]
Stanaszek, Luiza [2 ]
Mico, Vicente [3 ]
Zuo, Chao [4 ,5 ,6 ]
Trusiak, Maciej [1 ]
机构
[1] Warsaw Univ Technol, Inst Micromech & Photon, 8 Sw A Boboli St, PL-02525 Warsaw, Poland
[2] Mossakowski Med Res Inst, Polish Acad Sci, NeuroRepair Dept, 5 APawlinskiego St, PL-02106 Warsaw, Poland
[3] Univ Valencia, Dept Opt & Optometria & Ciencias Vis, C Doctor Moliner 50, Burjassot 46100, Spain
[4] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Smart Computat Imaging Lab SCILab, Nanjing 210094, Jiangsu, Peoples R China
[5] Nanjing Univ Sci & Technol, Smart Computat Imaging Res Inst SCIRI, Nanjing 210019, Jiangsu, Peoples R China
[6] Jiangsu Key Lab Spectral Imaging & Intelligent Sen, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
WIDE-FIELD; PHASE; ALGORITHMS;
D O I
10.1364/OE.505440
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Digital in-line holographic microscopy (DIHM) enables efficient and cost-effective computational quantitative phase imaging with a large field of view, making it valuable for studying cell motility, migration, and bio-microfluidics. However, the quality of DIHM reconstructions is compromised by twin-image noise, posing a significant challenge. Conventional methods for mitigating this noise involve complex hardware setups or time-consuming algorithms with often limited effectiveness. In this work, we propose UTIRnet, a deep learning solution for fast, robust, and universally applicable twin-image suppression, trained exclusively on numerically generated datasets. The availability of open-source UTIRnet codes facilitates its implementation in various DIHM systems without the need for extensive experimental training data. Notably, our network ensures the consistency of reconstruction results with input holograms, imparting a physics-based foundation and enhancing reliability compared to conventional deep learning approaches. Experimental verification was conducted among others on live neural glial cell culture migration sensing, which is crucial for neurodegenerative disease research.
引用
收藏
页码:742 / 761
页数:20
相关论文
共 50 条
  • [1] Twin-image elimination in an in-line digital holographic microscope
    Cho, Hyungjun
    Kim, Doocheol
    Yu, Younghun
    Shin, Sanghoon
    Jang, Wongun
    Son, Jung-Young
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 52 (04) : 1031 - 1035
  • [2] Physics-driven learning for digital holographic microscopy
    Kieberl, Remi
    Froehly, Luc
    Jacquot, Maxime
    EOS ANNUAL MEETING, EOSAM 2024, 2024, 309
  • [3] Twin-image elimination in digital in-line holography
    Lai, SC
    Kemper, B
    von Bally, G
    OPTICS AND LASERS IN BIOMEDICINE AND CULTURES OWLS V, 2000, 5 : 79 - 82
  • [4] Twin-Image Elimination in In-line Digital Holography Microscope
    Cho, Hyungjun
    Yu, Younghun
    Shin, Sanghoon
    KOREAN JOURNAL OF OPTICS AND PHOTONICS, 2007, 18 (02) : 117 - 121
  • [5] A parallel approach to digital holographic reconstruction with twin-image removal
    Tu, CY
    Gerlach, J
    Chu, SC
    Poon, TC
    IEEE SOUTHEASTCON '97 - ENGINEERING THE NEW CENTURY, PROCEEDINGS, 1996, : 258 - 259
  • [6] Reconstruction of Digital In-line Holograms and Suppression of the Twin-image in Gabor Holography
    Arapov, Yu D.
    Dvornichenko, M. E.
    Kamenev, V. G.
    Turkin, V. N.
    OPTICS, PHOTONICS AND LASERS (OPAL 2019), 2019, : 72 - 73
  • [7] Single-shot experimental-numerical twin-image removal in lensless digital holographic microscopy
    Arcab, Piotr
    Rogalski, Mikolaj
    Trusiak, Maciej
    OPTICS AND LASERS IN ENGINEERING, 2024, 172
  • [8] Digital in-line holographic microscopy
    Garcia-Sucerquia, J
    Xu, WB
    Jericho, SK
    Klages, P
    Jericho, MH
    Kreuzer, HJ
    APPLIED OPTICS, 2006, 45 (05) : 836 - 850
  • [9] Twin-image suppression in digital in-line holography based on wave-front filtering
    de Almeida, Jhony Luiz
    Comunello, Eros
    Sobieranski, Antonio
    Rocha Fernandes, Anita da Maria
    Cardoso, Gabriel Schade
    PATTERN ANALYSIS AND APPLICATIONS, 2021, 24 (03) : 907 - 914
  • [10] Twin-image suppression in digital in-line holography based on wave-front filtering
    Jhony Luiz de Almeida
    Eros Comunello
    Antonio Sobieranski
    Anita Maria da Rocha Fernandes
    Gabriel Schade Cardoso
    Pattern Analysis and Applications, 2021, 24 : 907 - 914