A Deep CNN-Based Detection Method for Multi-Scale Fine-Grained Objects in Remote Sensing Images

被引:6
|
作者
Xie, Qiyang [1 ,2 ]
Zhou, Daiying [2 ]
Tang, Rui [1 ]
Feng, Hao [2 ]
机构
[1] China West Normal Univ, Sch Elect Informat Engn, Nanchong 637002, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep CNN; multi-scale fine-grained object detection; multi-scale region generation network; fully convolutional region classification network;
D O I
10.1109/ACCESS.2024.3356716
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The detection of fine-grained objects in remote sensing images has been recognized as a challenging issue, which cannot be well addressed by the existing deep learning-based methods due to their inadaptability to multi-scale objects, slow convergence speed, and limitations to scarce datasets. To cope with the above issue, we propose a deep convolutional neural network (CNN)-based detection method for multi-scale fine-grained objects in complex remote sensing scenarios. Specifically, we adopt a deep CNN with a residual structure as the backbone network, to extract deep-level details from the image. Besides, we introduce a multi-scale region generation network to overcome the limitations of fixed receptive field convolution kernels and enable multi-scale object detection. Lastly, we replace fully connected layers in the fully convolutional region classification network with 1 x 1 convolutional layer to enhance detection efficiency and detection speed. To overcome the limitation of scarce datasets, we conducted experiments on the FAIR1M dataset, which is currently the largest fine-grained object detection dataset in the remote sensing field. Simulation results show that the proposed detection method achieves the highest average precision (35.86%) among all benchmarks and outperforms the classic Faster R-CNN-based method by 3.44%. Furthermore, our method demonstrates significantly improved detection speed compared to the Faster R-CNN-based methods.
引用
收藏
页码:15622 / 15630
页数:9
相关论文
共 50 条
  • [41] Rotation-lossless Non-local Attention and Fine-grained Feature Enhancement based Fine-grained Oriented Object Detection in Remote Sensing Images
    Guo, Weilong
    Li, Xuan
    Li, Shengyang
    2023 5TH INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTICS, ICCR, 2023, : 277 - 286
  • [42] Multi-Scale DenseNets-Based Aircraft Detection from Remote Sensing Images
    Wang, Yantian
    Li, Haifeng
    Jia, Peng
    Zhang, Guo
    Wang, Taoyang
    Hao, Xiaoyun
    SENSORS, 2019, 19 (23)
  • [43] Target Detection in Remote Sensing Images Based on Multi-scale Fusion Faster RCNN
    Shi, Fubin
    Liu, Yang
    Wang, Haoyu
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4043 - 4046
  • [44] Building detection algorithm in multi-scale remote sensing images based on attention mechanism
    Wei Ding
    Li Zhang
    Guangliang Yang
    Evolutionary Intelligence, 2023, 16 : 1717 - 1728
  • [45] Building Change Detection in Remote Sensing Images Based on Dual Multi-Scale Attention
    Zhang, Jian
    Pan, Bin
    Zhang, Yu
    Liu, Zhangle
    Zheng, Xin
    REMOTE SENSING, 2022, 14 (21)
  • [46] Building detection algorithm in multi-scale remote sensing images based on attention mechanism
    Ding, Wei
    Zhang, Li
    Yang, Guangliang
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (05) : 1717 - 1728
  • [47] Edge Feature Enhancement for Fine-Grained Segmentation of Remote Sensing Images
    Chen, Zhenxiang
    Xu, Tingfa
    Pan, Yongzhuo
    Shen, Ning
    Chen, Huan
    Li, Jianan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [48] A modular CNN-based building detector for remote sensing images
    Konstantinidis, Dimitrios
    Argyriou, Vasileios
    Stathaki, Tania
    Grammalidis, Nikolaos
    COMPUTER NETWORKS, 2020, 168
  • [49] Ship fine-grained classification network based on multi-scale feature fusion
    Chen, Lisu
    Wang, Qian
    Zhu, Enyan
    Feng, Daolun
    Wu, Huafeng
    Liu, Tao
    OCEAN ENGINEERING, 2025, 318
  • [50] Contrastive Learning for Fine-Grained Ship Classification in Remote Sensing Images
    Chen, Jianqi
    Chen, Keyan
    Chen, Hao
    Li, Wenyuan
    Zou, Zhengxia
    Shi, Zhenwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60