Interest rate derivatives for the fractional Cox-Ingersoll-Ross model

被引:0
|
作者
Bishwal, Jaya P. N. [1 ]
机构
[1] Univ N Carolina, Dept Math & Stat, Charlotte, NC USA
关键词
Wick-Ito stochastic differential equation; affine models; fractional Cox-Ingersoll-Ross model; interest rate; bond price; fractional Heston model; stochastic volatility; Monte Carlo method; LONG-RANGE DEPENDENCE; LIMIT-THEOREMS; TERM STRUCTURE; MEMORY; DISTRIBUTIONS; OPTION;
D O I
10.3233/AF-220467
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We obtain the bond price formula for the fractional Cox-Ingersoll-Ross model. Then we obtain option price formula for the bond. Finally we apply it to derive option price formula in fractional Heston model.
引用
收藏
页码:53 / 66
页数:14
相关论文
共 50 条
  • [31] Pricing of LIBOR futures by martingale method in Cox-Ingersoll-Ross model
    Ping Li
    Peng Shi
    Guangdong Huang
    Xiaojun Shi
    Journal of Systems Science and Complexity, 2010, 23 : 261 - 269
  • [32] Pricing of LIBOR futures by martingale method in Cox-Ingersoll-Ross model
    Li, Ping
    Shi, Peng
    Huang, Guangdong
    Shi, Xiaojun
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2010, 23 (02) : 261 - 269
  • [33] Risk sensitive portfolio management with Cox-Ingersoll-Ross interest rates: The HJB equation
    Bielecki, TR
    Pliska, SR
    Sheu, SJ
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 44 (05) : 1811 - 1843
  • [34] Harnack and super poincare inequalities for generalized Cox-Ingersoll-Ross model
    Huang, Xing
    Zhao, Fei
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2020, 38 (04) : 730 - 746
  • [35] Cox-Ingersoll-Ross模型的统计推断
    陈萍
    杨孝平
    应用概率统计, 2005, (03) : 285 - 292
  • [36] 跳跃扩散Cox-Ingersoll-Ross利率模型
    盛洁
    闫理坦
    苏州科技大学学报(自然科学版), 2018, 35 (01) : 33 - 38
  • [37] THE SEMIGROUP GOVERNING THE GENERALIZED COX-INGERSOLL-ROSS EQUATION
    Goldstein, Gisele Ruiz
    Goldstein, Jerome A.
    Mininni, Rosa Maria
    Romanelli, Silvia
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2016, 21 (3-4) : 235 - 264
  • [38] An adaptive splitting method for the Cox-Ingersoll-Ross process
    Kelly, Conall
    Lord, Gabriel J.
    APPLIED NUMERICAL MATHEMATICS, 2023, 186 : 252 - 273
  • [39] Optimal strong convergence rate of a backward Euler type scheme for the Cox-Ingersoll-Ross model driven by fractional Brownian motion
    Hong, Jialin
    Huang, Chuying
    Kamrani, Minoo
    Wang, Xu
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (05) : 2675 - 2692
  • [40] Low-dimensional Cox-Ingersoll-Ross process
    Mishura, Yuliya
    Pilipenko, Andrey
    Yurchenko-Tytarenko, Anton
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2024, 96 (05) : 1530 - 1550