Drag and uncertainty of power-law fluid flows in fractal multiparticle systems

被引:1
|
作者
Zhu, Jianting [1 ]
机构
[1] Univ Wyoming, Dept Civil & Architectural Engn & Construct Manage, Laramie, WY 82071 USA
关键词
Power -law fluid; Free surface cell model; Heterogeneous multiparticle system; Truncated power -law fractal distribution; Correction factor of drag coefficient; NON-NEWTONIAN FLUID; CREEPING FLOW; MASS-TRANSFER; PRESSURE-DROP; PERMEABILITY; MODEL; ASSEMBLAGE; BEDS; MOTION;
D O I
10.1016/j.powtec.2023.118838
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this study, new approaches are developed to predict the drag and assess its potential uncertainty of a nonNewtonian fluid in a multiparticle system. First, a new and simpler approximate solution of power-law fluid flow is developed using the free surface cell model. Second, the uncertainty of drag in a fractal multiparticle system is investigated by treating the heterogeneous voidage in the system as a truncated power-law fractal distribution. The results demonstrate that the developed simpler approximate solution works well compared to the analytical solutions and experimental data. Incorporating truncated power-law fractal voidage can better capture the experimental data. The voidage heterogeneity increases the drag of the power-law fluid moving through the multiparticle system. Strong shear-thinning effects of power-law fluids and high mean voidage diminish the effect of voidage heterogeneity. The flow drag of power-law fluid in the heterogeneous multiparticle system decreases with increasing fractal dimension.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Internal heat transfer to power-law fluid flows through porous media
    Rao, B.K.
    McDevitt, J.P.
    Vetter, D.L.
    American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD, 2000, 366 : 171 - 175
  • [32] Modeling of flows with power-law spectral densities and power-law distributions of flow intensities
    Kaulakys, Bronislovas
    Alaburda, Miglius
    Gontis, Vygintas
    Meskauskas, Tadas
    Ruseckas, Julius
    TRAFFIC AND GRANULAR FLOW ' 05, 2007, : 603 - +
  • [33] Dual solutions of Casson fluid flows over a power-law stretching sheet
    S. Haldar
    S. Mukhopadhyay
    G. C. Layek
    Journal of Applied Mechanics and Technical Physics, 2017, 58 : 629 - 634
  • [34] Power-law hereditariness of hierarchical fractal bones
    Deseri, Luca
    Di Paola, Mario
    Zingales, Massimiliano
    Pollaci, Pietro
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2013, 29 (12) : 1338 - 1360
  • [35] Applications of power-law (fractal) distributions in geology
    Turcotte, DL
    GIS and Spatial Analysis, Vol 1and 2, 2005, : 36 - 36
  • [36] DUAL SOLUTIONS OF CASSON FLUID FLOWS OVER A POWER-LAW STRETCHING SHEET
    Haldar, S.
    Mukhopadhyay, S.
    Layek, G. C.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2017, 58 (04) : 629 - 634
  • [37] Power-law fractal: The law of technological innovation output statistics
    Fang, S
    ISSI 2005: Proceedings of the 10th International Conference of the International Society for Scientometrics and Informetrics, Vols 1 and 2, 2005, : 121 - 128
  • [38] Drag forces of interacting spheres in power-law fluids
    Zhu, C
    Lam, K
    Chu, HH
    Tang, XD
    Liu, GL
    MECHANICS RESEARCH COMMUNICATIONS, 2003, 30 (06) : 651 - 662
  • [39] Minimum drag power-law shapes for rarefied flow
    Bowman, DS
    Lewis, MJ
    AIAA JOURNAL, 2002, 40 (05) : 1013 - 1015
  • [40] A modified drag model for power-law fluid-particle flow used in computational fluid dynamics simulation
    Pang, Boxue
    Wang, Shuyan
    Lu, Huilin
    ADVANCED POWDER TECHNOLOGY, 2021, 32 (04) : 1207 - 1218