Uncertainty quantification and attention-aware fusion guided multi-modal MR brain tumor segmentation

被引:6
|
作者
Zhou, Tongxue [1 ]
Zhu, Shan [2 ]
机构
[1] Hangzhou Normal Univ, Sch Informat Sci & Technol, Hangzhou 311121, Peoples R China
[2] Hangzhou Normal Univ, Sch Life & Environm Sci, Hangzhou 311121, Peoples R China
基金
中国国家自然科学基金;
关键词
Brain tumor segmentation; Uncertainty quantification; Feature fusion; Multi-modality; Deep learning; MECHANISM;
D O I
10.1016/j.compbiomed.2023.107142
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Brain tumor is one of the most aggressive cancers in the world, accurate brain tumor segmentation plays a critical role in clinical diagnosis and treatment planning. Although deep learning models have presented remarkable success in medical segmentation, they can only obtain the segmentation map without capturing the segmentation uncertainty. To achieve accurate and safe clinical results, it is necessary to produce extra uncertainty maps to assist the subsequent segmentation revision. To this end, we propose to exploit the uncertainty quantification in the deep learning model and apply it to multi-modal brain tumor segmentation. In addition, we develop an effective attention-aware multi-modal fusion method to learn the complimentary feature information from the multiple MR modalities. First, a multi-encoder-based 3D U-Net is proposed to obtain the initial segmentation results. Then, an estimated Bayesian model is presented to measure the uncertainty of the initial segmentation results. Finally, the obtained uncertainty maps are integrated into a deep learning-based segmentation network, serving as an additional constraint information to further refine the segmentation results. The proposed network is evaluated on publicly available BraTS 2018 and BraTS 2019 datasets. The experimental results demonstrate that the proposed method outperforms the previous state-of-theart methods on Dice score, Hausdorff distance and Sensitivity metrics. Furthermore, the proposed components could be easily applied to other network architectures and other computer vision fields.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A conflict-free multi-modal fusion network with spatial reinforcement transformers for brain tumor segmentation
    Hu, Tianyun
    Zhu, Hongqing
    Wang, Ziying
    Chen, Ning
    Huang, Bingcang
    Lu, Weiping
    Wang, Ying
    Computers in Biology and Medicine, 2024, 183
  • [32] TumorGAN: A Multi-Modal Data Augmentation Framework for Brain Tumor Segmentation
    Li, Qingyun
    Yu, Zhibin
    Wang, Yubo
    Zheng, Haiyong
    SENSORS, 2020, 20 (15) : 1 - 16
  • [33] Multi-modal Brain Tumor Segmentation Utilizing Convolutional Neural Networks
    Jakab, Marek
    Stevuliak, Marek
    Benesova, Wanda
    TWELFTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2019), 2020, 11433
  • [34] Multi-Modal Emotion Aware System Based on Fusion of Speech and Brain Information
    Ghoniem, Rania M.
    Algarni, Abeer D.
    Shaalan, Khaled
    INFORMATION, 2019, 10 (07)
  • [35] Multi-modal brain tumor segmentation via disentangled representation learning and region-aware contrastive learning
    Zhou, Tongxue
    PATTERN RECOGNITION, 2024, 149 (149)
  • [36] Attention-Guided Multi-modal and Multi-scale Fusion for Multispectral Pedestrian Detection
    Bao, Wei
    Huang, Meiyu
    Hu, Jingjing
    Xiang, Xueshuang
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2022, 2022, 13534 : 382 - 393
  • [37] AMF-NET: Attention-aware Multi-scale Fusion Network for Retinal Vessel Segmentation
    Yang, Qi
    Ma, Bingqi
    Cui, Hui
    Ma, Jiquan
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3277 - 3280
  • [38] Glioma Segmentation-Oriented Multi-Modal MR Image Fusion With Adversarial Learning
    Yu Liu
    Yu Shi
    Fuhao Mu
    Juan Cheng
    Xun Chen
    IEEE/CAAJournalofAutomaticaSinica, 2022, 9 (08) : 1528 - 1531
  • [39] Glioma Segmentation-Oriented Multi-Modal MR Image Fusion With Adversarial Learning
    Liu, Yu
    Shi, Yu
    Mu, Fuhao
    Cheng, Juan
    Chen, Xun
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (08) : 1528 - 1531
  • [40] Dual-Attention Deep Fusion Network for Multi-modal Medical Image Segmentation
    Zheng, Shenhai
    Ye, Xin
    Tan, Jiaxin
    Yang, Yifei
    Li, Laquan
    FOURTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING, ICGIP 2022, 2022, 12705