A Review on Sustainable Energy Sources Using Machine Learning and Deep Learning Models

被引:3
|
作者
Bhansali, Ashok [1 ]
Narasimhulu, Namala [2 ]
de Prado, Rocio Perez [3 ]
Divakarachari, Parameshachari Bidare [4 ]
Narayan, Dayanand Lal [5 ]
机构
[1] GLA Univ, Dept Comp Engn & Applicat, Mathura 281406, India
[2] Srinivasa Ramanujan Inst Technol Autonomous, Dept Elect & Elect Engn, Ananthapuramu 515701, India
[3] Univ Jaen, Dept Telecommun Engn, Jaen 23700, Spain
[4] Nitte Meenakshi Inst Technol, Dept Elect & Commun Engn, Bengaluru 560064, India
[5] GITAM Univ, GITAM Sch Technol, Dept Comp Sci & Engn, Bengaluru 561203, India
关键词
deep learning; energy conversion; hydro power energy; machine learning; renewable energy sources; solar energy; tidal energy; wind energy; WIND; SYSTEM; ALGORITHM;
D O I
10.3390/en16176236
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Today, methodologies based on learning models are utilized to generate precise conversion techniques for renewable sources. The methods based on Computational Intelligence (CI) are considered an effective way to generate renewable instruments. The energy-related complexities of developing such methods are dependent on the vastness of the data sets and number of parameters needed to be covered, both of which need to be carefully examined. The most recent and significant researchers in the field of learning-based approaches for renewable challenges are addressed in this article. There are several different Deep Learning (DL) and Machine Learning (ML) approaches that are utilized in solar, wind, hydro, and tidal energy sources. A new taxonomy is formed in the process of evaluating the effectiveness of the strategies that are described in the literature. This survey evaluates the advantages and the drawbacks of the existing methodologies and helps to find an effective approach to overcome the issues in the existing methods. In this study, various methods based on energy conversion systems in renewable source of energies like solar, wind, hydro power, and tidal energies are evaluated using ML and DL approaches.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Review on machine and deep learning models for the detection and prediction of Coronavirus
    Salehi, Ahmad Waleed
    Baglat, Preety
    Gupta, Gaurav
    MATERIALS TODAY-PROCEEDINGS, 2020, 33 : 3896 - 3901
  • [22] A Review of Deep Machine Learning
    Benuwa, Ben-Bright
    Zhan, Yongzhao
    Ghansah, Benjamin
    Wornyo, Dickson Keddy
    Kataka, Frank Banaseka
    INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH IN AFRICA, 2016, 24 : 124 - 136
  • [23] Automatic Eye Disease Detection Using Machine Learning and Deep Learning Models
    Badah, Nouf
    Algefes, Amal
    AlArjani, Ashwaq
    Mokni, Raouia
    PERVASIVE COMPUTING AND SOCIAL NETWORKING, ICPCSN 2022, 2023, 475 : 773 - 787
  • [24] Credit scoring using machine learning and deep Learning-Based models
    Mestiri, Sami
    DATA SCIENCE IN FINANCE AND ECONOMICS, 2024, 4 (02): : 236 - 248
  • [25] A holistic review on energy forecasting using big data and deep learning models
    Devaraj, Jayanthi
    Elavarasan, Rajvikram Madurai
    Shafiullah, G. M.
    Jamal, Taskin
    Khan, Irfan
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (09) : 13489 - 13530
  • [26] Review paper on research direction towards cancer prediction and prognosis using machine learning and deep learning models
    Murthy, Nimmagadda Satyanarayana
    Bethala, Chaitanya
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (5) : 5595 - 5613
  • [27] Review paper on research direction towards cancer prediction and prognosis using machine learning and deep learning models
    Nimmagadda Satyanarayana Murthy
    Chaitanya Bethala
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 5595 - 5613
  • [28] Advancements in sustainable food packaging: A comprehensive review on utilization of nanomaterials, machine learning and deep learning
    Gorde, Pratik Madhukar
    Dash, Dibya Ranjan
    Singh, Sushil Kumar
    Singha, Poonam
    SUSTAINABLE CHEMISTRY AND PHARMACY, 2024, 39
  • [29] Machine learning and deep learning predictive models for type 2 diabetes: a systematic review
    Fregoso-Aparicio, Luis
    Noguez, Julieta
    Montesinos, Luis
    Garcia-Garcia, Jose A.
    DIABETOLOGY & METABOLIC SYNDROME, 2021, 13 (01):
  • [30] Machine learning and deep learning models for human activity recognition in security and surveillance: a review
    Waghchaware, Sheetal
    Joshi, Radhika
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (08) : 4405 - 4436