Web Phishing Classification Model using Artificial Neural Network and Deep Learning Neural Network

被引:0
|
作者
Hassan, Noor Hazirah [1 ]
Fakharudin, Abdul Sahli [1 ]
机构
[1] Univ Malaysia Pahang, Fac Comp, Pekan, Pahang, Malaysia
关键词
Phishing website; classification; artificial neural network; convolutional neural network; machine learning;
D O I
10.14569/IJACSA.2023.0140759
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Phishing is an online crime in which a cybercriminal tries to persuade internet users to reveal important and sensitive personal information, such as bank account details, usernames, passwords, and social security numbers, to the phisher, usually for mean purposes. The target victim of the fraud suffers a financial loss, as well as the loss of personal information and reputation. Therefore, it is essential to identify an effective approach for phishing website classification. Machine learning approaches have been applied in the classification of phishing websites in recent years. The objectives of this research are to classify phishing websites using artificial neural network (ANN) and convolutional neural network (CNN) and then compare the results of the models. This study uses a phishing website dataset collected from the machine learning database, University of California, Irvine (UCI). There were nine input attributes and three output classes that represent types of websites either legitimate, suspicious, or phishing. The data was split into 70% and 30% for training and testing purposes, respectively. The results indicate that the modified ANN with Rectified Linear Unit (ReLU) activation function model outperforms other models by achieving the least average of root mean square error (RMSE) value for testing which is 0.2703, while the CNN model produced the least average RMSE for training which is 0.2631. ANN with Sigmoid activation function model obtained the highest average RMSE of 0.3516 for training and 0.3585 for testing.
引用
收藏
页码:535 / 542
页数:8
相关论文
共 50 条
  • [21] Classification of waveforms using unsupervised feature learning and artificial neural network
    Zhao, Bendong
    Chen, Shangfeng
    Liu, Junliang
    Lu, Huanzhang
    2015 IEEE ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2015, : 192 - 196
  • [22] An artificial neural network for neural spike classification
    Stitt, JP
    Gaumond, RP
    Frazier, JL
    Hanson, FE
    PROCEEDINGS OF THE IEEE 23RD NORTHEAST BIOENGINEERING CONFERENCE, 1997, : 15 - 16
  • [23] Deep learning classification of biomedical text using convolutional neural network
    Dollah R.
    Sheng C.Y.
    Zakaria N.
    Othman M.S.
    Rasib A.W.
    International Journal of Advanced Computer Science and Applications, 2019, 10 (08): : 512 - 517
  • [24] Brain Tumor Classification Using Deep Neural Network and Transfer Learning
    Kumar, Sandeep
    Choudhary, Shilpa
    Jain, Arpit
    Singh, Karan
    Ahmadian, Ali
    Bajuri, Mohd Yazid
    BRAIN TOPOGRAPHY, 2023, 36 (03) : 305 - 318
  • [25] Deep Learning Classification of Biomedical Text using Convolutional Neural Network
    Dollah, Rozilawati
    Sheng, Chew Yi
    Zakaria, Norhawaniah
    Othman, Mohd Shahizan
    Rasib, Abd Wahid
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (08) : 512 - 517
  • [26] Texture Classification Using Deep Convolutional Neural Network with Ensemble Learning
    Gupta, Krishan
    Jain, Tushar
    Sengupta, Debarka
    MINING INTELLIGENCE AND KNOWLEDGE EXPLORATION, MIKE 2018, 2018, 11308 : 341 - 350
  • [27] Incremental Deep Neural Network Learning Using Classification Confidence Thresholding
    Leo, Justin
    Kalita, Jugal
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (12) : 7706 - 7716
  • [28] Brain Tumor Classification Using Deep Neural Network and Transfer Learning
    Sandeep Kumar
    Shilpa Choudhary
    Arpit Jain
    Karan Singh
    Ali Ahmadian
    Mohd Yazid Bajuri
    Brain Topography, 2023, 36 : 305 - 318
  • [29] A new deep neural network for forecasting: Deep dendritic artificial neural network
    Egrioglu, Erol
    Bas, Eren
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (07)
  • [30] Automated text classification using a dynamic artificial neural network model
    Ghiassi, M.
    Olschimke, M.
    Moon, B.
    Arnaudo, P.
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (12) : 10967 - 10976