Asymptotic analysis of the higher-order lump in the Davey-Stewartson I equation

被引:4
|
作者
Guo, Lijuan [1 ]
Zhu, Min [1 ]
He, Jingsong [2 ]
机构
[1] Nanjing Forestry Univ, Coll Sci, Nanjing 210037, Jiangsu, Peoples R China
[2] Shenzhen Univ, Inst Adv Study, Shenzhen 518060, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
NONSTATIONARY SCHRODINGER; DISCRETE SPECTRUM; PETVIASHVILI; PACKETS; SCATTERING; DYNAMICS; SOLITONS;
D O I
10.1063/5.0153309
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the long-time asymptotic dynamics of three types of the higher-order lump in the Davey-Stewartson I equation, namely the linear lump, triangular lump and quasi-diamond lump, are investigated. For large time, the linear lump splits into certain fundamental lumps arranged in a straight line, which are associated with root structures of the first component in used eigenvector. The triangular lump consists of certain fundamental lumps forming a triangular structure, which are described by the roots of a special Wronskian that is similar to Yablonskii-Vorob polynomial. The quasi-diamond lump comprises a diamond in the outer region and a triangular lump pattern in the inner region (if it exists), which are decided by the roots of a general Wronskain determinant. The minimum values of these lump hollows are dependent on time and approach zero when time goes to infinity. Our approximate lump patterns and true solutions show excellent agreement.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] THE DAVEY-STEWARTSON EQUATION AND CONSTRAINED LINEAR FLOWS
    GUIL, F
    MANAS, M
    PHYSICA D, 1995, 87 (1-4): : 99 - 104
  • [32] ON THE BOUNDARY-CONDITIONS OF THE DAVEY-STEWARTSON EQUATION
    ABLOWITZ, MJ
    MANAKOV, SV
    SCHULTZ, CL
    PHYSICS LETTERS A, 1990, 148 (1-2) : 50 - 52
  • [33] The Davey-Stewartson Equation on the Half-Plane
    A. S. Fokas
    Communications in Mathematical Physics, 2009, 289 : 957 - 993
  • [34] Soliton stability to the Davey-Stewartson: I. Equation by the Hirota method
    Tajiri, M
    Takeuchi, K
    Arai, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2001, 70 (06) : 1505 - 1511
  • [35] FERMIONIC ANALYSIS OF DAVEY-STEWARTSON DROMIONS
    JAULENT, M
    MANNA, MA
    MARTINEZALONSO, L
    PHYSICS LETTERS A, 1990, 151 (6-7) : 303 - 307
  • [36] Numerical study of Davey-Stewartson I systems
    Frauendiener, Jorg
    Klein, Christian
    Muhammad, Umar
    Stoilov, Nikola
    STUDIES IN APPLIED MATHEMATICS, 2022, 149 (01) : 76 - 94
  • [37] Davey-Stewartson I的行波解
    张金良
    王跃明
    王明亮
    方宗德
    湖南工程学院学报(自然科学版), 2002, (03) : 60 - 61+92
  • [38] Soliton solutions to the nonlocal Davey-Stewartson III equation
    Fu, Heming
    Ruan, Chenzhen
    Hu, Weiying
    MODERN PHYSICS LETTERS B, 2021, 35 (01):
  • [39] Ill-posedness for the nonlinear Davey-Stewartson equation
    Caixia, Shen
    Boling, Guo
    ACTA MATHEMATICA SCIENTIA, 2008, 28 (01) : 117 - 127
  • [40] Structural instability of a soliton for the Davey-Stewartson II equation
    R. R. Gadyl’shin
    O. M. Kiselev
    Theoretical and Mathematical Physics, 1999, 118 : 278 - 284