Robust Nonlinear State Space Model Identification for Hemorrhage Resuscitation

被引:0
|
作者
Estiri, Elham [1 ]
Mirinejad, Hossein [1 ]
机构
[1] Kent State Univ, Coll Aeronaut & Engn, Kent, OH 44242 USA
来源
2023 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS, BHI | 2023年
基金
美国国家科学基金会;
关键词
PREDICT FLUID RESPONSIVENESS;
D O I
10.1109/BHI58575.2023.10313391
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel method for predicting hemodynamic responses in hemorrhage resuscitation. The proposed approach, namely, robust nonlinear state space modeling (RNSSM), aims to overcome challenges of identifying reliable models using limited and noisy critical care data by innovatively integrating autoencoder learning and variational Gaussian inference in a unified framework. Simulation results demonstrate the initial feasibility and performance evidence of the RNSSM approach as a digital twin of an animal study in hemorrhage resuscitation scenarios. Clinical Relevance- Enabling reliable, personalized hemodynamic models amenable to the closed-loop control design can potentially lead to development of efficient model-informed precision dosing strategies, promoting patient safety and outcomes in critical care.
引用
收藏
页数:4
相关论文
共 50 条
  • [11] Parameter identification for Hammerstein nonlinear system with polynomial and state space model
    Li, Chenghao
    Li, Feng
    Cao, Qingfeng
    MEASUREMENT & CONTROL, 2023, 56 (1-2): : 327 - 336
  • [12] An identification approach to nonlinear state space model for industrial multivariable model predictive control
    Zhao, H
    Guiver, J
    Sentoni, G
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 796 - 800
  • [13] Parameter Identification for Nonlinear State-Space Models of a Biological Network via Linearization and Robust State Estimation
    Xiong, Jie
    Zhou, Tong
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 8235 - 8240
  • [14] Nonlinear Identification of an Aero-Engine Component Using Polynomial Nonlinear State Space Model
    Cooper, Samson B.
    Tiels, Koen
    DiMaio, Dario
    NONLINEAR DYNAMICS, VOL 1, 2019, : 261 - 273
  • [15] Nonlinear State Space Model Identification Using a Regularized Basis Function Expansion
    Svensson, Andreas
    Schon, Thomas B.
    Solin, Arno
    Sarkka, Simo
    2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2015, : 481 - 484
  • [16] Nonlinear state space identification of a synchronous generator
    Karrari, M
    Malik, OP
    2003 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-4, CONFERENCE PROCEEDINGS, 2003, : 2399 - 2404
  • [17] Nonlinear system identification of air turbine rocket engine based on polynomial nonlinear state space model
    Liang, Jiayu
    Zhao, Qingjun
    Zhao, Wei
    NONLINEAR DYNAMICS, 2025,
  • [18] Nonlinear Control of a Permanent Magnet Synchronous Motor Based on State Space Neural Network Model Identification and State Estimation by Using a Robust Unscented Kalman Filter
    Velarde-Gomez, Sergio
    Giraldo, Eduardo
    ENG, 2025, 6 (02):
  • [19] Identification of nonlinear systems using Polynomial Nonlinear State Space models
    Paduart, Johan
    Lauwers, Lieve
    Swevers, Jan
    Smolders, Kris
    Schoukens, Johan
    Pintelon, Rik
    AUTOMATICA, 2010, 46 (04) : 647 - 656
  • [20] State-space identification of nonlinear flight dynamics
    Lyshevski, SE
    PROCEEDINGS OF THE 1997 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, 1997, : 496 - 498