Robust Nonlinear State Space Model Identification for Hemorrhage Resuscitation

被引:0
|
作者
Estiri, Elham [1 ]
Mirinejad, Hossein [1 ]
机构
[1] Kent State Univ, Coll Aeronaut & Engn, Kent, OH 44242 USA
基金
美国国家科学基金会;
关键词
PREDICT FLUID RESPONSIVENESS;
D O I
10.1109/BHI58575.2023.10313391
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel method for predicting hemodynamic responses in hemorrhage resuscitation. The proposed approach, namely, robust nonlinear state space modeling (RNSSM), aims to overcome challenges of identifying reliable models using limited and noisy critical care data by innovatively integrating autoencoder learning and variational Gaussian inference in a unified framework. Simulation results demonstrate the initial feasibility and performance evidence of the RNSSM approach as a digital twin of an animal study in hemorrhage resuscitation scenarios. Clinical Relevance- Enabling reliable, personalized hemodynamic models amenable to the closed-loop control design can potentially lead to development of efficient model-informed precision dosing strategies, promoting patient safety and outcomes in critical care.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Nonlinear state-space system identification with robust laplace model
    Liu, Xin
    Yang, Xianqiang
    Liu, Xiaofeng
    INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (06) : 1492 - 1501
  • [2] Recursive identification of a nonlinear state space model
    Wigren, Torbjoern
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2023, 37 (02) : 447 - 473
  • [3] Robust identification approach for nonlinear state-space models
    Liu, Xin
    Yang, Xianqiang
    NEUROCOMPUTING, 2019, 333 : 329 - 338
  • [4] Robust Identification of Nonlinear Systems With Missing Observations: The Case of State-Space Model Structure
    Yang, Xianqiang
    Liu, Xin
    Yin, Shen
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (05) : 2763 - 2774
  • [5] Nonlinear state space model identification of synchronous generators
    Dehghani, M.
    Nikravesh, S. K. Y.
    ELECTRIC POWER SYSTEMS RESEARCH, 2008, 78 (05) : 926 - 940
  • [6] Robust Optimization Method for the Identification of Nonlinear State-Space Models
    Van Mulders, Anne
    Vanbeylen, Laurent
    Schoukens, Johan
    2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2012, : 1423 - 1428
  • [7] Local Model Networks for the Identification of Nonlinear State Space Models
    Schuessler, Max
    Muenker, Tobias
    Nelles, Oliver
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 6437 - 6442
  • [8] Parameters identification of nonlinear state space model of synchronous generator
    Kou, Pangao
    Zhou, Jianzhong
    Wang, Changqing
    Xiao, Han
    Zhang, Huifeng
    Li, Chaoshun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2011, 24 (07) : 1227 - 1237
  • [9] Identification of a nonlinear state space model for control using a feature space transformation
    Smolders, K.
    Witters, M.
    Sas, P.
    Swevers, J.
    Proceedings of ISMA2006: International Conference on Noise and Vibration Engineering, Vols 1-8, 2006, : 3331 - 3342
  • [10] Robust identification of nonlinear time-delay system in state-space form
    Liu, Xin
    Yang, Xianqiang
    Zhu, Pengbo
    Xiong, Weili
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (16): : 9953 - 9971