Data-driven reduced order modeling for parametric PDE eigenvalue problems using Gaussian process regression

被引:3
|
作者
Bertrand, Fleurianne [1 ]
Boffi, Daniele [2 ,3 ]
Halim, Abdul [2 ,4 ]
机构
[1] TU Chemnitz, Chemnitz, Germany
[2] King Abdullah Univ Sci & Technol KAUST, Thuwal, Saudi Arabia
[3] Univ Pavia, Pavia, Italy
[4] Munger Univ, HS Coll, Munger, India
关键词
Reduced basis method; Gaussian process regression; Eigenvalue problem; Proper orthogonal decomposition; Non-intrusive method; ORTHOGONAL DECOMPOSITION METHODS; BASIS APPROXIMATION; ELEMENT-METHOD; BOUNDS;
D O I
10.1016/j.jcp.2023.112503
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we propose a data-driven reduced basis (RB) method for the approximation of parametric eigenvalue problems. The method is based on the offline and online paradigms. In the offline stage, we generate snapshots and construct the basis of the reduced space, using a POD approach. Gaussian process regressions (GPR) are used for approximating the eigenvalues and projection coefficients of the eigenvectors in the reduced space. All the GPR corresponding to the eigenvalues and projection coefficients are trained in the offline stage, using the data generated in the offline stage. The output corresponding to new parameters can be obtained in the online stage using the trained GPR. The proposed algorithm is used to solve affine and non-affine parameter-dependent eigenvalue problems. The numerical results demonstrate the robustness of the proposed non-intrusive method.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Parametric Gaussian process regression for big data
    Raissi, Maziar
    Babaee, Hessam
    Karniadakis, George Em
    COMPUTATIONAL MECHANICS, 2019, 64 (02) : 409 - 416
  • [22] On Nonstationary Gaussian Process Model for Solving Data-Driven Optimization Problems
    Hu, Caie
    Zeng, Sanyou
    Li, Changhe
    Zhao, Fei
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (04) : 2440 - 2453
  • [23] State consistence of data-driven reduced order models for parametric aeroelastic analysis
    Krolick, William C.
    Shu, Jung I.
    Wang, Yi
    Pant, Kapil
    SN APPLIED SCIENCES, 2021, 3 (02):
  • [24] PARAMETRIC DATA-DRIVEN REDUCED ORDER MODELS WITH STATE CONSISTENCE FOR AEROELASTIC ANALYSIS
    Krolick, William C.
    Wang, Yi
    Pant, Kapil
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 1, 2019,
  • [25] State consistence of data-driven reduced order models for parametric aeroelastic analysis
    William C. Krolick
    Jung I. Shu
    Yi Wang
    Kapil Pant
    SN Applied Sciences, 2021, 3
  • [26] Model Reference Gaussian Process Regression: Data-Driven Output Feedback Controller
    Kim, Hyuntae
    Chang, Hamin
    Shim, Hyungbo
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 955 - 960
  • [27] On Data-driven Attack-resilient Gaussian Process Regression for Dynamic Systems
    Kim, Hunmin
    Guo, Pinyao
    Zhu, Minghui
    Liu, Peng
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 2981 - 2986
  • [28] Model Reference Gaussian Process Regression: Data-Driven State Feedback Controller
    Kim, Hyuntae
    Chang, Hamin
    IEEE ACCESS, 2023, 11 : 134374 - 134381
  • [29] Data-driven estimation of air mass using Gaussian mixture regression
    Kolewe, B.
    Haghani, A.
    Beckmann, R.
    Noack, R.
    Jeinsch, T.
    2014 IEEE 23RD INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2014, : 2433 - 2438
  • [30] Improving accuracy in parametric reduced-order models for classical guitars through data-driven discrepancy modeling
    Cillo, Pierfrancesco
    Brauchler, Alexander
    Gonzalez, Sebastian
    Ziegler, Pascal
    Antonacci, Fabio
    Sarti, Augusto
    Eberhard, Peter
    ACTA ACUSTICA, 2024, 8