Amharic political sentiment analysis using deep learning approaches

被引:1
|
作者
Alemayehu, Fikirte [1 ]
Meshesha, Million [2 ]
Abate, Jemal [1 ]
机构
[1] Haramaya Univ, Dept Informat Sci, Dire Dawa, Ethiopia
[2] Addis Ababa Univ, Sch Informat Sci, Addis Ababa, Ethiopia
关键词
D O I
10.1038/s41598-023-45137-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study delves into the realm of sentiment analysis in the Amharic language, focusing on political sentences extracted from social media platforms in Ethiopia. The research employs deep learning techniques, including Convolutional Neural Networks (CNN), Bidirectional Long Short-Term Memory (Bi-LSTM), and a hybrid model combining CNN with Bi-LSTM to analyze and classify sentiments. The hybrid CNN-Bi-LSTM model emerges as the top performer, achieving an impressive accuracy of 91.60%. While these results mark a significant milestone, challenges persist, such as the need for a more extensive and diverse dataset and the identification of nuanced sentiments like sarcasm and figurative speech. The study underscores the importance of transitioning from binary sentiment analysis to a multi-class classification approach, enabling a finer-grained understanding of sentiments. Moreover, the establishment of a standardized corpus for Amharic sentiment analysis emerges as a critical endeavor with broad applicability beyond politics, spanning domains like agriculture, industry, tourism, sports, entertainment, and satisfaction analysis. The exploration of sarcastic comments in the Amharic language stands out as a promising avenue for future research.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Named Entity Recognition for Amharic Using Deep Learning
    Gamback, Bjorn
    Sikdar, Utpal Kumar
    2017 IST-AFRICA WEEK CONFERENCE (IST-AFRICA), 2017,
  • [32] Enhancing Sentiment Analysis Using Hybrid Deep Learning
    Ukaihongsar, Watthana
    Jitsakul, Watchareewan
    PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON COMPUTING AND INFORMATION TECHNOLOGY (IC2IT 2022), 2022, 453 : 183 - 193
  • [33] Sentiment Analysis of Product Reviews using Deep Learning
    Panthati, Jagadeesh
    Bhaskar, Jasmine
    Ranga, Tarun Kumar
    Challa, Manish Reddy
    2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2018, : 2408 - 2414
  • [34] Sentiment analysis using a deep ensemble learning model
    Başarslan, Muhammet Sinan
    Kayaalp, Fatih
    Multimedia Tools and Applications, 2024, 83 (14) : 42207 - 42231
  • [35] Sentiment analysis using deep learning architectures: a review
    Ashima Yadav
    Dinesh Kumar Vishwakarma
    Artificial Intelligence Review, 2020, 53 : 4335 - 4385
  • [36] Sentiment Analysis in Outdoor Images Using Deep Learning
    Bonasoli, Wyverson
    Dorini, Leyza
    Minetto, Rodrigo
    Silva, Thiago H.
    WEBMEDIA'18: PROCEEDINGS OF THE 24TH BRAZILIAN SYMPOSIUM ON MULTIMEDIA AND THE WEB, 2018, : 181 - 188
  • [37] Arabic Sentiment Analysis Using Deep Learning: A Review
    Hakami, Zainab
    Alshathri, Muneera
    Alqhtani, Nora
    Alharthi, Latifah
    Alhumoud, Sarah
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2019, 19 (04): : 255 - 263
  • [38] Survey of Sentiment Analysis Using Deep Learning Techniques
    Prabha, Indhra Om M.
    Srikanth, G. Umarani
    PROCEEDINGS OF 2019 1ST INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION AND COMMUNICATION TECHNOLOGY (ICIICT 2019), 2019,
  • [39] Sentiment Analysis of Consumer Reviews Using Deep Learning
    Iqbal, Amjad
    Amin, Rashid
    Iqbal, Javed
    Alroobaea, Roobaea
    Binmahfoudh, Ahmed
    Hussain, Mudassar
    SUSTAINABILITY, 2022, 14 (17)
  • [40] A Novel Framework For Sentiment Analysis Using Deep Learning
    Aslam, Andleeb
    Qamar, Usman
    Saqib, Pakizah
    Ayesha, Reda
    Qadeer, Aiman
    2020 22ND INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT): DIGITAL SECURITY GLOBAL AGENDA FOR SAFE SOCIETY!, 2020, : 525 - 529