RENAL CYST DETECTION IN ABDOMINAL MRI IMAGES USING DEEP LEARNING SEGMENTATION

被引:0
|
作者
Sowmiya, S. [1 ]
Snehalatha, U. [1 ,2 ]
Murugan, Jayanth [3 ]
机构
[1] SRM Inst Sci & Technol, Coll Engn & Technol, Dept Biomed Engn, Kattankulathur, Tamil Nadu, India
[2] Batangas State Univ, Coll Engn Architecture & Fine Arts, Batangas City, Philippines
[3] SRM Med Coll Hosp & Res Ctr Potheri, Dept Radiodiag, Kattankulathur, Tamil Nadu, India
关键词
U-net segmentation; GLCM; Blob analysis; A renal cyst; MRI;
D O I
10.4015/S1016237223500229
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Renal cysts are categorized as simple cysts and complex cysts. Simple cysts are harmless and complicated cysts are cancerous and leading to a dangerous situation. The study aims to implement a deep learning-based segmentation that uses the Renal images to segment the cyst, detecting the size of the cyst and assessing the state of cyst from the infected renal image. The automated method for segmenting renal cysts from MRI abdominal images is based on a U-net algorithm. The deep learning-based segmentation like U-net algorithm segmented the renal cyst. The characteristics of the segmented cyst were analyzed using the Statistical features extracted using GLCM algorithm. The machine learning classification is performed using the extracted GLCM features. Three machine learning classifiers such as Naive Bayes, Hoeffding Tree and SVM are used in the proposed study. Naive Bayes and Hoeffding Tree achieved the highest accuracy of 98%. The SVM classifier achieved 96% of accuracy. This study proposed a new system to diagnose the renal cyst from MRI abdomen images. Our study focused on cyst segmentation, size detection, feature extraction and classification. The three-classification method suits best for classifying the renal cyst. Naive Bayes and Hoeffding Tree classifier achieved the highest accuracy. The diameter of cyst size is measured using the blobs analysis method to predict the renal cyst at an earlier stage. Hence, the deep learning-based segmentation performed well in segmenting the renal cyst and the three classifiers achieved the highest accuracy, above 95%.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A Deep Learning Based Effective Model for Brain Tumor Segmentation and Classification Using MRI Images
    Gayathri, T.
    Kumar, Sundeep K.
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2023, 14 (06) : 1280 - 1288
  • [22] EFFICIENT SEGMENTATION MODEL USING MRI IMAGES AND DEEP LEARNING TECHNIQUES FOR MULTIPLE SCLEROSIS CLASSIFICATION
    Langat, Gilbert
    Zou, Beiji
    Kui, Xiaoyan
    Njagi, Kevin
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2024, 22 (05) : 61 - 98
  • [23] Detection and Segmentation of Pelvic Bones Metastases in MRI Images for Patients With Prostate Cancer Based on Deep Learning
    Liu, Xiang
    Han, Chao
    Cui, Yingpu
    Xie, Tingting
    Zhang, Xiaodong
    Wang, Xiaoying
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [24] Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI
    Kai Roman Laukamp
    Frank Thiele
    Georgy Shakirin
    David Zopfs
    Andrea Faymonville
    Marco Timmer
    David Maintz
    Michael Perkuhn
    Jan Borggrefe
    European Radiology, 2019, 29 : 124 - 132
  • [25] Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI
    Laukamp, Kai Roman
    Thiele, Frank
    Shakirin, Georgy
    Zopfs, David
    Faymonville, Andrea
    Timmer, Marco
    Maintz, David
    Perkuhn, Michael
    Borggrefe, Jan
    EUROPEAN RADIOLOGY, 2019, 29 (01) : 124 - 132
  • [26] Tumor Segmentation in Breast MRI Using Deep Learning
    Matic, Zeljka
    Kadry, Seifedine
    2022 FIFTH INTERNATIONAL CONFERENCE OF WOMEN IN DATA SCIENCE AT PRINCE SULTAN UNIVERSITY (WIDS-PSU 2022), 2022, : 49 - 51
  • [27] Caries detection with tooth surface segmentation on intraoral photographic images using deep learning
    Park, Eun Young
    Cho, Hyeonrae
    Kang, Sohee
    Jeong, Sungmoon
    Kim, Eun-Kyong
    BMC ORAL HEALTH, 2022, 22 (01)
  • [28] A Deep Learning Approach to Intrusion Detection and Segmentation in Pellet Fuels Using Microscopic Images
    Iwaszenko, Sebastian
    Szymanska, Marta
    Rog, Leokadia
    SENSORS, 2023, 23 (14)
  • [29] Segmentation of underwater images using morphology for deep learning
    Lee, Ji-Eun
    Lee, Chul-Won
    Park, Seok-Joon
    Shin, Jea-Beom
    Jung, Hyun-Gi
    JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2023, 42 (04): : 370 - 376
  • [30] Instance Segmentation of Underwater Images by Using Deep Learning
    Chen, Jianfeng
    Zhu, Shidong
    Luo, Weilin
    ELECTRONICS, 2024, 13 (02)