Preharvest Maize Fungal Microbiome and Mycotoxin Contamination: Case of Zambia's Different Rainfall Patterns

被引:7
|
作者
Katati, Bwalya [1 ,2 ]
Schoenmakers, Pierre [1 ,5 ]
Njapau, Henry [2 ]
Kachapulula, Paul W. [3 ]
Zwaan, Bas J. [1 ]
van Diepeningen, Anne D. [4 ]
Schoustra, Sijmen E. [1 ,3 ]
机构
[1] Wageningen Univ & Res, Laborary Genet, Wageningen, Netherlands
[2] Natl Inst Sci & Ind Res, Mycotoxicol Lab, Lusaka, Zambia
[3] Univ Zambia, Sch Agr Sci, Lusaka, Zambia
[4] Wageningen Univ & Res, Business Unit Biointeract & Plant Hlth, Wageningen, Netherlands
[5] Rhein Westfal TH Aachen, RWTH, Aachen, Germany
关键词
aflatoxin; fumonisin-B1; fungi; ITS1; maize; mycobiome; ASPERGILLUS-FLAVUS; AFLATOXIN; TALAROMYCES; HYBRIDS; MEDIA; SOUTH;
D O I
10.1128/aem.00078-23
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Fungi contaminate various crops worldwide. Maize, an important human staple and livestock cereal, is susceptible to contamination with fungi in the field. The preharvest maize mycobiome may be crucial in defining the health of the crop in terms of potential disease burden and mycotoxins. We investigated the preharvest maize mycobiome structure, including the influence of weather patterns, in terms of rainfall intensity, on its composition. In addition, we investigated correlation of genera Fusarium and Aspergillus with maize fumonisin-B1 and aflatoxin. Forty maize fields from selected districts in the wetter northern (N) and drier southern (S) agroecological zones of Zambia were sampled twice over two seasons (1 and 2). The defined weather variables over the two seasons were low rainfall with dry spell (S1), low rainfall (S2), and high rainfall (N1 and N2). High-throughput DNA amplicon sequencing of internal transcribed spacer 1 (ITS1) was used to determine the mycobiome structure and the composition in relation to rainfall patterns. We detected 61 genera, with Fusarium and previously unreported Sarocladium in Zambia to have the highest frequency of detection on the maize. There was a significant difference in fungal genera composition between S1 and S2 but no difference between N1 and N2. The weather pattern with dry spell, S1, had a strong proliferation of Meyerozyma and xerophiles Penicillium, Kodamaea, and Aspergillus. The four genera drove the difference in composition between S1 and S2 and the significantly higher fungal diversity in S1 compared to N2. Of the mycotoxin-important fungi, dry conditions (S1) were a key driver for proliferation of Aspergillus, while Fusarium proliferation occurred irrespective of weather patterns. The relative abundance of Aspergillus and Fusarium resonated with maize aflatoxin and fumonisin-B1 levels, respectively.IMPORTANCE Fungi contaminate various crops worldwide. Maize, an important human staple and livestock cereal, is susceptible to contamination with fungi in the field. Fungi are drivers of plant disease and can compromise yield. Some species of fungi are known to produce chemical compounds (mycotoxins), which are cancer-causing agents in humans and impair livestock productivity. It is important to understand the spectrum of fungi on maize and how weather conditions can impact their abundance. This is because the abundance of fungi in the field can have a bearing on the health of the crop as well as potential for mycotoxins contamination. By understanding the spectrum of the preharvest fungi, it becomes possible to know the key fungi adapted to the maize and subsequently the potential for crop disease as well as mycotoxins contamination. The influence of weather conditions on the spectrum of preharvest fungi on maize has not been fully explored.
引用
收藏
页数:16
相关论文
共 32 条
  • [21] Characterization of maize root microbiome in two different soils by minimizing plant DNA contamination in metabarcoding analysis
    Aliche, Ernest B.
    Talsma, Warner
    Munnik, Teun
    Bouwmeester, Harro J.
    BIOLOGY AND FERTILITY OF SOILS, 2021, 57 (05) : 731 - 737
  • [22] Mycotoxin Contamination in Stored Maize and Groundnuts Based on Storage Practices and Conditions in Subhumid Tropical Africa: The Case of Kilosa District, Tanzania
    Magembe, K. S.
    Mwatawala, M. W.
    Mamiro, D. P.
    JOURNAL OF FOOD PROTECTION, 2016, 79 (12) : 2160 - 2166
  • [23] Dis-incentivizing sustainable intensification? The case of Zambia's maize-fertilizer subsidy program
    Morgan, Stephen N.
    Mason, Nicole M.
    Levine, N. Kendra
    Zulu-Mbata, Olipa
    WORLD DEVELOPMENT, 2019, 122 : 54 - 69
  • [24] Influence of Agronomic Factors on Mycotoxin Contamination in Maize and Changes during a 10-Day Harvest-Till-Drying Simulation Period: A Different Perspective
    Borras-Vallverdu, Bernat
    Ramos, Antonio J.
    Cantero-Martinez, Carlos
    Marin, Sonia
    Sanchis, Vicente
    Fernandez-Ortega, Jesus
    TOXINS, 2022, 14 (09)
  • [25] Responses to selection of S5 inbreds for broad-based resistance to ear rots and grain mycotoxin contamination caused by Fusarium spp. in maize
    Presello, D. A.
    Pereyra, A. O.
    Iglesias, J.
    Fauguel, C. M.
    Sampietro, D. A.
    Eyherabide, G. H.
    EUPHYTICA, 2011, 178 (01) : 23 - 29
  • [26] Responses to selection of S5 inbreds for broad-based resistance to ear rots and grain mycotoxin contamination caused by Fusarium spp. in maize
    D. A. Presello
    A. O. Pereyra
    J. Iglesias
    C. M. Fauguel
    D. A. Sampietro
    G. H. Eyhérabide
    Euphytica, 2011, 178 : 23 - 29
  • [28] A Comprehensive Study To Explore Differences in Mycotoxin Patterns from Agro-ecological Regions through Maize, Peanut, and Cassava Products: A Case Study, Cameroon
    Ediage, Emmanuel Njumbe
    Hell, Kerstin
    De Saeger, Sarah
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2014, 62 (20) : 4789 - 4797
  • [29] Different dietary patterns and reduction of lung cancer risk: A large case-control study in the U.S.
    Huakang Tu
    John V. Heymach
    Chi-Pang Wen
    Yuanqing Ye
    Jeanne A. Pierzynski
    Jack A. Roth
    Xifeng Wu
    Scientific Reports, 6
  • [30] Different dietary patterns and reduction of lung cancer risk: a large case-control study in the U.S
    Tu, Huakang
    Heymach, John V.
    Weng, Chi-Pang
    Ye, Yuanqing
    Pierzynski, Jeanne A.
    Roth, Jack A.
    Wu, Xifeng
    CANCER RESEARCH, 2016, 76