Atmosphere;
Numerical weather prediction;
forecasting;
Data assimilation;
Ensembles;
Model evaluation;
performance;
PRECIPITATION FORECAST SKILL;
VARIATIONAL DATA ASSIMILATION;
SEVERE WEATHER PREDICTION;
KALMAN FILTER;
SCALE ENSEMBLE;
MODEL;
SYSTEM;
RESOLUTION;
PREDICTABILITY;
IMPLEMENTATION;
D O I:
10.1175/MWR-D-21-0269.1
中图分类号:
P4 [大气科学(气象学)];
学科分类号:
0706 ;
070601 ;
摘要:
Convection-allowing model (CAM) ensemble forecasts provide quantitative probabilistic guidance of con-vective hazards that forecasters would otherwise qualitatively assess. Various initial condition (IC) strategies can be used to generate CAM probabilistic forecasts, but it is still unclear how different configurations perform. Schwartz et al. verified five 10-member IC CAM ensembles over one month of 0000 UTC initializations with a focus on precipitation. Here, we ini-tialize four 42-member IC CAM ensembles every 12 h over 6 weeks and verify forecasts of precipitation, column maximum reflectivity, and hourly maximum updraft helicity. The Texas Tech University real-time EnKF ensemble and three addi-tional IC ensemble modeling systems are verified. Holding the model configuration constant, additional ICs are generated by downscaling time-lagged Global Ensemble Forecast System (GEFS) members, applying correlated random noise to Global Forecast System (GFS) analyses, and recentering EnKF perturbations about GFS analyses. We found that ensem-ble ICs constructed with correlated random noise and EnKF perturbations about GFS analyses both produced higher-quality precipitation forecasts than downscaled GEFS and EnKF strategies. However, downscaled GEFS and EnKF perturbations about GFS analyses frequently initialized more skillful forecasts of reflectivity than ICs with random pertur-bations, suggesting that flow-dependent perturbations are important for forecasting deep convection. Even with a subopti-mal EnKF configuration, our findings still echo those of Schwartz et al. We extend their work by exploring 1) verification of additional convective hazards and 2) empirical scaling of IC perturbations as a computationally inexpensive method for improving CAM ensemble forecasts.
机构:
China Meteorol Adm, CMA Earth Syst Modeling & Predict Ctr, Beijing 100081, Peoples R China
China Meteorol Adm, State Key Lab Severe Weather, Beijing 100081, Peoples R China
China Meteorol Adm, Key Lab Earth Syst Modeling & Predict, Beijing 100081, Peoples R ChinaChina Meteorol Adm CMA, Chinese Acad Meteorol Sci, Beijing 100081, Peoples R China
Chen, Jing
Wang, Jingzhuo
论文数: 0引用数: 0
h-index: 0
机构:
China Meteorol Adm, CMA Earth Syst Modeling & Predict Ctr, Beijing 100081, Peoples R China
China Meteorol Adm, State Key Lab Severe Weather, Beijing 100081, Peoples R China
China Meteorol Adm, Key Lab Earth Syst Modeling & Predict, Beijing 100081, Peoples R ChinaChina Meteorol Adm CMA, Chinese Acad Meteorol Sci, Beijing 100081, Peoples R China
Wang, Jingzhuo
Chen, Fajing
论文数: 0引用数: 0
h-index: 0
机构:
China Meteorol Adm, CMA Earth Syst Modeling & Predict Ctr, Beijing 100081, Peoples R China
China Meteorol Adm, State Key Lab Severe Weather, Beijing 100081, Peoples R China
China Meteorol Adm, Key Lab Earth Syst Modeling & Predict, Beijing 100081, Peoples R ChinaChina Meteorol Adm CMA, Chinese Acad Meteorol Sci, Beijing 100081, Peoples R China
Chen, Fajing
Wang, Jing
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Meteorol Observ, Tianjin 300074, Peoples R ChinaChina Meteorol Adm CMA, Chinese Acad Meteorol Sci, Beijing 100081, Peoples R China
Wang, Jing
Xu, Zhizhen
论文数: 0引用数: 0
h-index: 0
机构:
China Meteorol Adm, CMA Earth Syst Modeling & Predict Ctr, Beijing 100081, Peoples R China
China Meteorol Adm, State Key Lab Severe Weather, Beijing 100081, Peoples R China
China Meteorol Adm, Key Lab Earth Syst Modeling & Predict, Beijing 100081, Peoples R ChinaChina Meteorol Adm CMA, Chinese Acad Meteorol Sci, Beijing 100081, Peoples R China
机构:
Univ Oklahoma, Cooperat Inst Severe & High Impact Weather Res & O, Norman, OK 73019 USA
Natl Severe Storms Lab, NOAA, OAR, Norman, OK 73072 USAUniv Oklahoma, Cooperat Inst Severe & High Impact Weather Res & O, Norman, OK 73019 USA
Galarneau, Thomas J.
Wicker, Louis J.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Severe Storms Lab, NOAA, OAR, Norman, OK 73072 USAUniv Oklahoma, Cooperat Inst Severe & High Impact Weather Res & O, Norman, OK 73019 USA
Wicker, Louis J.
Knopfmeier, Kent H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oklahoma, Cooperat Inst Severe & High Impact Weather Res & O, Norman, OK 73019 USA
Natl Severe Storms Lab, NOAA, OAR, Norman, OK 73072 USAUniv Oklahoma, Cooperat Inst Severe & High Impact Weather Res & O, Norman, OK 73019 USA
Knopfmeier, Kent H.
Miller, William J. S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Cooperat Inst Satellite Earth Syst Studies, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD USA
Ctr Satellite Applicat & Res, NOAA, NESDIS, College Pk, MD USAUniv Oklahoma, Cooperat Inst Severe & High Impact Weather Res & O, Norman, OK 73019 USA
Miller, William J. S.
Skinner, Patrick S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oklahoma, Cooperat Inst Severe & High Impact Weather Res & O, Norman, OK 73019 USA
Natl Severe Storms Lab, NOAA, OAR, Norman, OK 73072 USAUniv Oklahoma, Cooperat Inst Severe & High Impact Weather Res & O, Norman, OK 73019 USA
Skinner, Patrick S.
Wilson, Katie A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oklahoma, Cooperat Inst Severe & High Impact Weather Res & O, Norman, OK 73019 USA
Natl Severe Storms Lab, NOAA, OAR, Norman, OK 73072 USAUniv Oklahoma, Cooperat Inst Severe & High Impact Weather Res & O, Norman, OK 73019 USA
机构:
China Meteorol Adm, Asset Operat Ctr, Beijing 100081, Peoples R ChinaChina Meteorol Adm, Asset Operat Ctr, Beijing 100081, Peoples R China
Wang, Lu
Shen, Xueshun
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing 100081, Peoples R China
China Meteorol Adm, Natl Meteorol Ctr, Numer Weather Predict Ctr, Beijing 100081, Peoples R ChinaChina Meteorol Adm, Asset Operat Ctr, Beijing 100081, Peoples R China
Shen, Xueshun
Liu, Juanjuan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Atmosphere Phys, Beijing 100029, Peoples R ChinaChina Meteorol Adm, Asset Operat Ctr, Beijing 100081, Peoples R China
Liu, Juanjuan
Wang, Bin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Atmosphere Phys, Beijing 100029, Peoples R China
Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R ChinaChina Meteorol Adm, Asset Operat Ctr, Beijing 100081, Peoples R China
机构:
State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences
Numerical Weather Prediction Center/National Meteorological Center,China Meteorological AdministrationAsset Operation Centre,China Meteorological Administration
Xueshun SHEN
Juanjuan LIU
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Atmosphere Physics, Chinese Academy of SciencesAsset Operation Centre,China Meteorological Administration
Juanjuan LIU
Bin WANG
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Atmosphere Physics, Chinese Academy of Sciences
Center for Earth System Science, Tsinghua UniversityAsset Operation Centre,China Meteorological Administration
机构:
Penn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USAPenn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USA
Saslo, Seth
Greybush, Steven J.
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USAPenn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USA