Some classes of nonsingular tensors and application

被引:0
|
作者
He, Jun [1 ]
Liu, Yanmin [1 ]
Lv, Wei [1 ]
机构
[1] Zunyi Normal Coll, Sch Math, Zunyi, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2024年 / 72卷 / 07期
关键词
Tensor; C-tensor; C-pi(R)-tensor; B-pi(R)-tensor; nonsingular tensor; REAL EIGENVALUES; DETERMINANTS; INCLUSION; INTERVALS; EXCLUSION;
D O I
10.1080/03081087.2023.2172540
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The concept of C-pi(R) -matrix is extended to C-pi(R)-tensor, which also generalizes the concept of C-tensor. A necessary and sufficient condition for a tensor to be a C-pi(R)-tensor is provided. Weanalyse decompositions of C-pi(R)-tensors and prove that C-pi(R)-tensors are nonsingular. Positive linear combinations and Hadamard product of two C-pi(R)-tensors are also discussed. Finally, some properties of B-pi(R)-tensor are given to localize real eigenvalues of a tensor.
引用
收藏
页码:1078 / 1093
页数:16
相关论文
共 50 条
  • [31] Geometric programming for multilinear systems with nonsingular M-tensors
    Chen, Haibin
    Zhou, Guanglu
    Yan, Hong
    APPLIED MATHEMATICS LETTERS, 2025, 163
  • [32] LINEAR PRESERVERS OF BALANCED NONSINGULAR INERTIA CLASSES
    LOEWY, R
    PIERCE, S
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 224 : 483 - 499
  • [33] BOUNDEDLY FINITE CONJUGACY CLASSES OF TENSORS
    Bastos, Raimundo
    Monetta, Carmine
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2021, 10 (04) : 186 - 194
  • [34] ON NEW CLASSES OF NONNEGATIVE SYMMETRIC TENSORS
    Chen, Bilian
    He, Simai
    Li, Zhening
    Zhang, Shuzhong
    SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (01) : 292 - 318
  • [35] INDUCED OPERATORS ON SYMMETRY CLASSES OF TENSORS
    TAM, TY
    MONATSHEFTE FUR MATHEMATIK, 1986, 101 (03): : 245 - 252
  • [36] On the dimensions of cyclic symmetry classes of tensors
    Darafsheh, MR
    Pournaki, MR
    JOURNAL OF ALGEBRA, 1998, 205 (01) : 317 - 325
  • [37] Symmetry classes of tensors as group modules
    Jafari, M. H.
    Madadi, A. R.
    JOURNAL OF ALGEBRA, 2013, 393 : 30 - 40
  • [38] INDUCED BASES OF SYMMETRY CLASSES OF TENSORS
    MERRIS, R
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 39 (AUG) : 103 - 110
  • [39] Induced operators on symmetry classes of tensors
    Li, CK
    Zaharia, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (02) : 807 - 836
  • [40] PROPERTY TENSORS IN MAGNETIC CRYSTAL CLASSES
    BIRSS, RR
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1962, 79 (511): : 946 - &