Temperature-Dependent Hydrogen Embrittlement of Austenitic Stainless Steel on Phase Transformation

被引:1
|
作者
Choi, Young-Hwan [1 ]
Lee, Jung Hee [2 ]
Kim, Seok-Min [1 ]
Lee, Dong-Ha [1 ]
Kim, Hee-Tae [1 ]
Kim, Jeong-Hyeon [3 ]
Kim, Minjung [3 ]
Kim, Seul-Kee [3 ]
Lee, Jae-Myung [1 ,3 ]
机构
[1] Pusan Natl Univ, Dept Naval Architecture & Ocean Engn, Busan 46241, South Korea
[2] Korea Res Inst Ships & Ocean Engn KRISO, Offshore Ind R&BD Ctr, Geoje Si 53201, South Korea
[3] Pusan Natl Univ, Hydrogen Ship Technol Ctr, Busan 46241, South Korea
关键词
liquid-hydrogen storage; hydrogen embrittlement; prestrain effect; transformation-induced plasticity; hydrogen index; INDUCED MARTENSITE-TRANSFORMATION; MECHANICAL-PROPERTIES; STRAIN-RATE; DEFORMATION; TENSILE; ENVIRONMENT; PRESTRAIN; FRACTURE; FAILURE;
D O I
10.3390/met13010035
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A critical issue that needs to be addressed for wider utilization of hydrogen as fuel is protection against hydrogen embrittlement during cryogenic storage as it weakens the microstructure bonding force of metals through hydrogen penetration. Austenitic stainless steel, which is usually used in cryogenic vessels and is well known for its high hydrogen resistance at room temperature, has also been reported to be vulnerable to hydrogen embrittlement under cryogenic temperatures. In addition, because large storage vessels are operated over a wide range of temperatures, material behavior at various temperature conditions should also be considered. Therefore, in the present study, hydrogen charging of austenitic stainless steel was performed under various temperature conditions for carrying out prestrain and tensile tests. A decrease in the tensile strength and elongation and an increase in the yield strength were observed in all cases. In particular, the case of 20% prestrain at cryogenic temperature followed by tensile test at room temperature after hydrogen charging showed fracture in the elastic region. The hydrogen index was evaluated from the perspective of elongation and reduction in area, which are factors that indicate the degree of ductility. The aforementioned case showed the most severe results, while non-prestraining followed by tensile tests at room temperature was the least effected by hydrogen. In addition, the effect of strain-induced martensite on hydrogen embrittlement was analyzed using electron backscattered diffraction (EBSD). It was observed that the higher is the prestrain at cryogenic temperatures, the greater is the volume fraction of alpha' martensite, which leads to hydrogen embrittlement. The edges and center of the fracture surface were analyzed using scanning electron microscopy (SEM). The hydrogen-charged specimens exhibited brittle fractures at the edges and ductile fractures at the center. The more severe the embrittlement, the more were the number of intergranular fractures and microdimples observed at the edges.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Review on hydrogen embrittlement of austenitic stainless steel weldments in high pressure hydrogen atmosphere
    Zhou C.
    He M.
    Guo J.
    Li Y.
    Wu H.
    Xiao S.
    Chen G.
    Ouyang R.
    He S.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2022, 41 (02): : 519 - 536
  • [22] Temperature Dependency of Hydrogen Embrittlement in Thermally H-precharged STS 304 Austenitic Stainless Steel
    Hanna Yang
    Thanh Tuan Nguyen
    Jaeyeong Park
    Hyeong Min Heo
    Junghoon Lee
    Un Bong Baek
    Young-Kook Lee
    Metals and Materials International, 2023, 29 : 303 - 314
  • [23] Temperature Dependency of Hydrogen Embrittlement in Thermally H-precharged STS 304 Austenitic Stainless Steel
    Yang, Hanna
    Nguyen, Thanh Tuan
    Park, Jaeyeong
    Heo, Hyeong Min
    Lee, Junghoon
    Baek, Un Bong
    Lee, Young-Kook
    METALS AND MATERIALS INTERNATIONAL, 2023, 29 (02) : 303 - 314
  • [24] Temperature dependence of martensitic transformation in austenitic stainless steel
    Mumtaz, K
    Takahashi, S
    Echigoya, J
    Zhang, L
    Kamada, Y
    Sato, M
    JOURNAL OF MATERIALS SCIENCE LETTERS, 2003, 22 (06) : 423 - 427
  • [25] HYDROGEN EMBRITTLEMENT OF STAINLESS STEEL
    BENSON, RB
    DANN, RK
    ROBERTS, LW
    TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AIME, 1968, 242 (10): : 2199 - +
  • [26] Influence of copper as an alloying element on hydrogen environment embrittlement of austenitic stainless steel
    Michler, Thorsten
    Naumann, Joerg
    Sattler, Erich
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (17) : 12765 - 12770
  • [27] Mechanical modelling of hydrogen embrittlement in 316L austenitic stainless steel
    Toribio, J.
    Valiente, A.
    Cortes, R.
    Caballero, L.
    Informacion Tecnologica, 1996, 7 (04): : 93 - 96
  • [28] Influence of plasma nitriding on hydrogen environment embrittlement of 1.4301 austenitic stainless steel
    Michler, Thorsten
    SURFACE & COATINGS TECHNOLOGY, 2008, 202 (09): : 1688 - 1695
  • [29] Effect of ultrafine grain refinement on hydrogen embrittlement of metastable austenitic stainless steel
    Mine, Yoji
    Horita, Nobuaki
    Horita, Zenji
    Takashima, Kazuki
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (22) : 15415 - 15425
  • [30] Modelling of the hydrogen embrittlement in austenitic stainless steels
    Cavaliere, Pasquale
    Perrone, Angelo
    Marsano, Debora
    Marzanese, Antonio
    Sadeghi, Behzad
    MATERIALIA, 2023, 30