Machine learning-based performance predictions for steels considering manufacturing process parameters: a review

被引:1
|
作者
Fang, Wei [1 ]
Huang, Jia-xin [1 ]
Peng, Tie-xu [1 ]
Long, Yang [1 ]
Yin, Fu-xing [2 ]
机构
[1] Hebei Univ Technol, Sch Mat Sci & Engn, Tianjin Key Lab Mat Laminating Fabricat & Interfac, Tianjin 300132, Peoples R China
[2] Guangdong Acad Sci, Inst New Mat, Guangzhou 510651, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Steel; Manufacturing process; Machine learning; Performance prediction; Algorithm; FATIGUE LIFE PREDICTION; LOW-ALLOY STEELS; FEATURE-SELECTION; MECHANICAL-PROPERTIES; BAYESIAN OPTIMIZATION; SURFACE-DEFECTS; NEURAL-NETWORKS; ROLLING FORCE; DESIGN; MODEL;
D O I
10.1007/s42243-024-01179-5
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Steels are widely used as structural materials, making them essential for supporting our lives and industries. However, further improving the comprehensive properties of steel through traditional trial-and-error methods becomes challenging due to the continuous development and numerous processing parameters involved in steel production. To address this challenge, the application of machine learning methods becomes crucial in establishing complex relationships between manufacturing processes and steel performance. This review begins with a general overview of machine learning methods and subsequently introduces various performance predictions in steel materials. The classification of performance prediction was used to assess the current application of machine learning model-assisted design. Several important issues, such as data source and characteristics, intermediate features, algorithm optimization, key feature analysis, and the role of environmental factors, were summarized and analyzed. These insights will be beneficial and enlightening to future research endeavors in this field.
引用
收藏
页码:1555 / 1581
页数:27
相关论文
共 50 条
  • [31] Machine learning-based structure-property predictions in silica aerogels
    Abdusalamov, Rasul
    Pandit, Prakul
    Milow, Barbara
    Itskov, Mikhail
    Rege, Ameya
    SOFT MATTER, 2021, 17 (31) : 7350 - 7358
  • [32] Machine learning-based design for additive manufacturing in biomedical engineering
    Wu, Chi
    Wan, Boyang
    Entezari, Ali
    Fang, Jianguang
    Xu, Yanan
    Li, Qing
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 266
  • [33] Calibration of Machine Learning-Based Probabilistic Hail Predictions for Operational Forecasting
    Burke, Amanda
    Snook, Nathan
    Gagne, David John, II
    Mccorkle, Sarah
    Mcgovern, Amy
    WEATHER AND FORECASTING, 2020, 35 (01) : 149 - 168
  • [34] Machine Learning-Based Detection Technique for NDT in Industrial Manufacturing
    Niccolai, Alessandro
    Caputo, Davide
    Chieco, Leonardo
    Grimaccia, Francesco
    Mussetta, Marco
    MATHEMATICS, 2021, 9 (11)
  • [35] Supervised machine learning-based categorization and prediction of uranium adsorption capacity on various process parameters
    Pamungkas, Niken Siwi
    Putra, Zico Pratama
    Pratama, Hendra Adhi
    Yusuf, Muhammad
    JOURNAL OF HAZARDOUS MATERIALS ADVANCES, 2025, 17
  • [36] Machine learning-based vertical resolution enhancement considering the seismic attenuation
    Jo, Yeonghwa
    Choi, Yonggyu
    Seol, Soon Jee
    Byun, Joongmoo
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [37] Review of machine learning-based Mineral Resource estimation
    Mahoob, M. A.
    Celik, T.
    Genc, B.
    JOURNAL OF THE SOUTHERN AFRICAN INSTITUTE OF MINING AND METALLURGY, 2022, 122 (11) : 655 - 664
  • [38] Machine learning-based new approach to films review
    Jassim, Mustafa Abdalrassual
    Abd, Dhafar Hamed
    Omri, Mohamed Nazih
    SOCIAL NETWORK ANALYSIS AND MINING, 2023, 13 (01)
  • [39] A Review of Machine Learning-Based Recognition of Sign Language
    Singh, Shaminder
    Gupta, Anuj Kumar
    Arora, Tanvi
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2023, 23 (06)
  • [40] Performance Analysis on Machine Learning-Based Channel Estimation
    Mei, Kai
    Liu, Jun
    Zhang, Xiaochen
    Rajatheva, Nandana
    Wei, Jibo
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (08) : 5183 - 5193