Numerical studies for plasmas of a linear plasma device HIT-PSI with geometry modified SOLPS-ITER

被引:0
|
作者
Wang, Min [1 ]
Nie, Qiuyue [2 ,3 ]
Huang, Tao [1 ]
Wang, Xiaogang [1 ,3 ]
Zhang, Yanjie [4 ]
机构
[1] Harbin Inst Technol, Sch Phys, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Sch Elect Engn & Automat, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, Lab Space Environm & Phys Sci, Harbin 150001, Peoples R China
[4] Dalian Inst Technol, Sch Phys, Key Lab Mat Modificat Laser Ion & Electron Beams, MOE Minist Educ, Dalian 116024, Peoples R China
关键词
HIT-PSI; heat flux; linear plasma; SOLPS-ITER device; 52.55.Dy; 52.65.-y; 28.52.-s;
D O I
10.1088/1674-1056/ad16d4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The HIT-PSI is a linear plasma device built for physically simulating the high heat flux environment of future reactor divertors to test/develop advanced target plate materials. In this study, the geometry-modified SOLPS-ITER program is employed to examine the effects of the magnetic field strength and neutral pressure in the device on the heat flux experienced by the target plate of the HIT-PSI device. The findings of the numerical simulation indicate a positive correlation between the magnetic field strength and the heat flux density. Conversely, there is a negative correlation observed between the heat flux density and the neutral pressure. When the magnetic field strength at the axis exceeds 1 tesla and the neutral pressure falls below 10 Pa, the HIT-PSI has the capability to attain a heat flux of 10 MW & sdot;m-2 at the target plate. The simulation results offer a valuable point of reference for subsequent experiments at HIT-PSI.
引用
收藏
页数:6
相关论文
共 17 条
  • [1] Numerical studies for plasmas of a linear plasma device HIT-PSI with geometry modified SOLPS-ITER
    王敏
    聂秋月
    黄韬
    王晓钢
    张彦杰
    Chinese Physics B, 2024, 33 (03) : 576 - 581
  • [2] Simulations of Argon plasmas in the linear plasma device GyM with the SOLPS-ITER code
    Sala, M.
    Tonello, E.
    Uccello, A.
    Bonnin, X.
    Ricci, D.
    Dellasega, D.
    Granucci, G.
    Passoni, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (05)
  • [3] SOLPS-ITER simulations of a vapour box design for the linear device Magnum-PSI
    Gonzalez, J.
    Westerhof, E.
    Morgan, T. W.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2023, 65 (05)
  • [4] Simulation of plasma transport in the linear plasma device MPS-LD by SOLPS-ITER
    Zhang, Yanjie
    Sang, Chaofeng
    Sun, Changjiang
    Wang, Min
    Wang, Yue
    Wang, Qi
    Wang, Dezhen
    NUCLEAR MATERIALS AND ENERGY, 2022, 33
  • [5] Plasma edge simulations including realistic wall geometry with SOLPS-ITER
    Dekeyser, W.
    Boerner, P.
    Voskoboynikov, S.
    Rozhanksy, V. A.
    Senichenkov, I.
    Kaveeva, L.
    Veselova, I.
    Vekshina, E.
    Bonnin, X.
    Pitts, R. A.
    Baelmans, M.
    NUCLEAR MATERIALS AND ENERGY, 2021, 27
  • [6] SOLPS-ITER simulations of the ITER divertor with improved plasma-facing component geometry
    Pshenov, A. A.
    Bonnin, X.
    Pitts, R. A.
    NUCLEAR MATERIALS AND ENERGY, 2025, 42
  • [7] Numerical simulation of a helium plasma-material interaction experiment in GyM linear device through SOLPS-ITER and ERO2.0 codes
    Mombelli, F.
    Alberti, G.
    Tonello, E.
    Tuccari, C.
    Uccello, A.
    Baumann, C.
    Bonnin, X.
    Romazanov, J.
    Passoni, M.
    NUCLEAR FUSION, 2025, 65 (02)
  • [8] A point plasma model for linear plasma devices based on SOLPS-ITER equations: application to helium plasma
    Tonello, E.
    Formenti, A.
    Alberti, G.
    Uccello, A.
    Passoni, M.
    NUCLEAR FUSION, 2021, 61 (06)
  • [9] Global SOLPS-ITER and ERO2.0 coupling in a linear device for the study of plasma-wall interaction in helium plasma
    Alberti, G.
    Tonello, E.
    Carminati, P.
    Uccello, A.
    Bonnin, X.
    Romazanov, J.
    Brezinsek, S.
    Passoni, M.
    NUCLEAR FUSION, 2023, 63 (02)
  • [10] Simulation studies of tungsten impurity behaviors in helium plasma in comparison with deuterium plasma via SOLPS-ITER
    Liu, Xiaoju
    Gao, Shanlu
    Shi, Qiqi
    Ming, Tingfeng
    Li, Guoqiang
    Gao, Xiang
    PHYSICS OF PLASMAS, 2024, 31 (06)