On a bridge connecting Lebesgue and Morrey spaces in view of their growth properties

被引:5
|
作者
Haroske, Dorothee D. [1 ]
Moura, Susana D. [2 ]
Skrzypczak, Leszek [3 ]
机构
[1] Friedrich Schiller Univ, Inst Math, D-07737 Jena, Germany
[2] Univ Coimbra, Dept Math, CMUC, P-3000143 Coimbra, Portugal
[3] Adam Mickiewicz Univ, Fac Math & Comp Sci, Ul Uniwersytetu Poznanskiego 4, PL-61614 Poznan, Poland
关键词
Generalized Morrey spaces; generalized Besov-Morrey spaces; spaces of regular distributions; growth envelopes; REGULAR DISTRIBUTIONS; INTEGRAL-OPERATORS; EMBEDDINGS; EQUATIONS;
D O I
10.1142/S0219530523500379
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study generalized Morrey spaces M-phi,M-p(R-d) and Besov-Morrey spaces related to them. These spaces appear quite naturally in connection with the study of PDE or to characterize boundedness of certain integral operators. Here, we study unboundedness properties of functions belonging to those spaces in terms of their growth envelopes. This concept has been studied and applied successfully for a variety of smoothness spaces already. Surprisingly, for the generalized Morrey spaces we arrive at three possible cases only, i.e. boundedness, the L-p-behavior or the proper Morrey behavior. These cases are characterized in terms of the limit of phi(t) and t(-d/p)phi(t) as t -> 0(+) and t -> infinity, respectively. For the generalized Besov-Morrey spaces the limit of t(-d/p)phi(t) as t -> 0(+) also plays a role.
引用
收藏
页码:751 / 790
页数:40
相关论文
共 50 条
  • [21] NECESSARY AND SUFFICIENT CONDITIONS FOR THE BOUNDEDNESS OF THE MAXIMAL OPERATOR FROM LEBESGUE SPACES TO MORREY-TYPE SPACES
    Burenkov, V. I.
    Goldman, M. L.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02): : 401 - 418
  • [22] The Boundedness of the Riesz Potential Operator from Generalized Grand Lebesgue Spaces to Generalized Grand Morrey Spaces
    Umarkhadzhiev, Salaudin
    OPERATOR THEORY, OPERATOR ALGEBRAS AND APPLICATIONS, 2014, 242 : 363 - 373
  • [23] Inclusion properties of generalized Morrey spaces
    Gunawan, Hendra
    Hakim, Denny I.
    Limanta, Kevin M.
    Masta, Al A.
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (2-3) : 332 - 340
  • [24] On inclusion properties of discrete Morrey spaces
    Gunawan, Hendra
    Hakim, Denny Ivanal
    Idris, Mochammad
    GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (01) : 37 - 44
  • [25] Discrete Morrey spaces and their inclusion properties
    Gunawan, Hendra
    Kikianty, Eder
    Schwanke, Christopher
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (8-9) : 1283 - 1296
  • [26] Properties of analytic Morrey spaces and applications
    Liu, Junming
    Lou, Zengjian
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (14-15) : 1673 - 1693
  • [27] Some Liouville theorems for stationary Navier-Stokes equations in Lebesgue and Morrey spaces
    Chamorro, Diego
    Jarrin, Oscar
    Lemarie-Rieusset, Pierre-Gilles
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (03): : 689 - 710
  • [28] GROWTH PROPERTIES OF POTENTIALS IN CENTRAL MORREY-ORLICZ SPACES ON THE UNIT BALL
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 (01) : 21 - 46
  • [29] On Some Properties of Convolution in Morrey Type Spaces
    Guliyeva, F. A.
    Sadigova, S. R.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2018, 8 (01): : 140 - 150
  • [30] Maximal Operator with Rough Kernel in Variable Musielak–Morrey–Orlicz type Spaces, Variable Herz Spaces and Grand Variable Lebesgue Spaces
    Humberto Rafeiro
    Stefan Samko
    Integral Equations and Operator Theory, 2017, 89 : 111 - 124