Incentive Mechanism Design for Federated Learning and Unlearning

被引:4
|
作者
Ding, Ningning [1 ]
Sun, Zhenyu [1 ]
Wei, Ermin [1 ]
Berry, Randall [1 ]
机构
[1] Northwestern Univ, Evanston, IL 60201 USA
基金
美国国家科学基金会;
关键词
incentive mechanism; federated learning; federated unlearning; PRIVACY;
D O I
10.1145/3565287.3610269
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To protect users' right to be forgotten in federated learning, federated unlearning aims at eliminating the impact of leaving users' data on the global learned model. The current research in federated unlearning mainly concentrated on developing effective and efficient unlearning techniques. However, the issue of incentivizing valuable users to remain engaged and preventing their data from being unlearned is still under-explored, yet important to the unlearned model performance. This paper focuses on the incentive issue and develops an incentive mechanism for federated learning and unlearning. We first characterize the leaving users' impact on the global model accuracy and the required communication rounds for unlearning. Building on these results, we propose a four-stage game to capture the interaction and information updates during the learning and unlearning process. A key contribution is to summarize users' multi-dimensional private information into one-dimensional metrics to guide the incentive design. We show that users who incur high costs and experience significant training losses are more likely to discontinue their engagement through federated unlearning. The server tends to retain users who make substantial contributions to the model but has a trade-off on users' training losses, as large training losses of retained users increase privacy costs but decrease unlearning costs. The numerical results demonstrate the necessity of unlearning incentives for retaining valuable leaving users, and also show that our proposed mechanisms decrease the server's cost by up to 53.91% compared to state-of-the-art benchmarks.
引用
收藏
页码:11 / 20
页数:10
相关论文
共 50 条
  • [41] Trading Data For Learning: Incentive Mechanism For On-Device Federated Learning
    Hu, Rui
    Gong, Yanmin
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [42] Quality-Aware Incentive Mechanism Design Based on Matching Game for Hierarchical Federated Learning
    Du Hui
    Li Zhuo
    Chen Xin
    IEEE INFOCOM 2022 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2022,
  • [43] Truthful Incentive Mechanism Design via Internalizing Externalities and LP Relaxation for Vertical Federated Learning
    Lu, Jianfeng
    Pan, Bangqi
    Seid, Abegaz Mohammed
    Li, Bing
    Hu, Gangqiang
    Wan, Shaohua
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (06) : 2909 - 2923
  • [44] Game Analysis and Incentive Mechanism Design for Differentially Private Cross-Silo Federated Learning
    Mao, Wuxing
    Ma, Qian
    Liao, Guocheng
    Chen, Xu
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (10) : 9337 - 9351
  • [45] Federated Learning Incentive Mechanism with Supervised Fuzzy Shapley Value
    Yang, Xun
    Xiang, Shuwen
    Peng, Changgen
    Tan, Weijie
    Wang, Yue
    Liu, Hai
    Ding, Hongfa
    AXIOMS, 2024, 13 (04)
  • [46] Byzantine-robust federated learning with ensemble incentive mechanism
    Zhao, Shihai
    Pu, Juncheng
    Fu, Xiaodong
    Liu, Li
    Dai, Fei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 159 : 272 - 283
  • [47] A Novel Incentive Mechanism for Federated Learning over Wireless Communications
    Wang Y.
    Zhou Y.
    Huang P.
    IEEE. Trans. Artif. Intell., 11 (5561-5574): : 1 - 14
  • [48] Federated Learning for Edge Networks: Resource Optimization and Incentive Mechanism
    Khan, Latif U.
    Pandey, Shashi Raj
    Tran, Nguyen H.
    Saad, Walid
    Han, Zhu
    Nguyen, Minh N. H.
    Hong, Choong Seon
    IEEE COMMUNICATIONS MAGAZINE, 2020, 58 (10) : 88 - 93
  • [49] A Stackelberg Incentive Mechanism for Wireless Federated Learning With Differential Privacy
    Yi, Zhenning
    Jiao, Yutao
    Dai, Wenting
    Li, Guoxin
    Wang, Haichao
    Xu, Yuhua
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (09) : 1805 - 1809
  • [50] A federated learning incentive mechanism in a non-monopoly market
    Na, Shijie
    Liang, Yuzhi
    Yiu, Siu-Ming
    NEUROCOMPUTING, 2024, 586