The Tb theorem for some inhomogeneous Besov and Triebel-Lizorkin spaces over space of homogeneous type

被引:3
|
作者
Tao, Xiangxing [1 ]
Kang, Yachan [1 ]
Zheng, Taotao [1 ]
机构
[1] Zhejiang Univ Sci & Technol, Dept Math, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
Spaces of homogeneous type; T b theorem; Para-accretive functions; Inhomogeneous Besov spaces; Inhomogeneous Triebel-Lizorkin spaces; LIPSCHITZ-SPACES;
D O I
10.1016/j.jmaa.2023.127879
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors give some new characterizations of the inhomogeneous Besov spaces and inhomogeneous Triebel-Lizorkin spaces respectively over space of homogeneous type, and establish the Tb theorems for the boundedness of the Calderon-Zygmund singular integral operator with non-convolution kernel on these new inhomogeneous Besov and Triebel-Lizorkin spaces.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Smooth Decompositions of Triebel-Lizorkin and Besov Spaces on Product Spaces of Homogeneous Type
    Liao, Fanghui
    Liu, Zongguang
    Zhang, Xiaojin
    JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [22] Dahlberg degeneracy for homogeneous Besov and Triebel-Lizorkin spaces
    Bourdaud, Gerard
    Moussai, Madani
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (03) : 878 - 894
  • [23] Homogeneous variable exponent Besov and Triebel-Lizorkin spaces
    Almeida, Alexandre
    Diening, Lars
    Hasto, Peter
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (8-9) : 1177 - 1190
  • [24] TRIEBEL-LIZORKIN SPACES ON SPACES OF HOMOGENEOUS TYPE
    HAN, YS
    STUDIA MATHEMATICA, 1994, 108 (03) : 247 - 273
  • [25] T1 theorem on homogeneous product Besov spaces and product Triebel-Lizorkin spaces
    Zheng, Taotao
    Xiao, Yanmei
    He, Shaoyong
    Tao, Xiangxing
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (03)
  • [26] INEQUALITIES IN HOMOGENEOUS TRIEBEL-LIZORKIN AND BESOV-LIPSCHITZ SPACES
    Wang, Lifeng
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (04) : 1318 - 1393
  • [27] Functional characterizations of realized homogeneous Besov and Triebel-Lizorkin spaces
    Gheribi, Bochra
    Moussai, Madani
    FILOMAT, 2024, 38 (13) : 4417 - 4440
  • [28] Wavelet characterization of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type and its applications
    He, Ziyi
    Wang, Fan
    Yang, Dachun
    Yuan, Wen
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 54 (54) : 176 - 226
  • [29] T1 theorem for Besov and Triebel-Lizorkin spaces
    Donggao Deng
    Yongsheng Han
    Science in China Series A: Mathematics, 2005, 48 (5): : 657 - 665
  • [30] GENERALIZED BESOV SPACES AND TRIEBEL-LIZORKIN SPACES
    Chin-Cheng Lin
    AnalysisinTheoryandApplications, 2008, 24 (04) : 336 - 350