Development length and bond behavior of lap-spliced reinforcement in Ultra-high performance concrete beams

被引:6
|
作者
Liang, Rui [1 ,2 ]
Huang, Yuan [1 ]
机构
[1] Hunan Univ, Coll Civil Engn, Hunan Prov Key Lab Damage Diag Engn Struct, Changsha 410082, Peoples R China
[2] Xinjiang Univ, Sch Civil Engn & Architecture, Urumqi 830047, Peoples R China
关键词
Ultra -high performance concrete (UHPC); Bond behavior; Lap -splice beam test; Bond splitting strength; Development length; STRENGTH;
D O I
10.1016/j.engstruct.2023.116354
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Ultra-high performance concrete (UHPC) is a new composite material that can significantly improve bond performance with steel bars. There is insufficient research on UHPC bond behavior under actual stress within structural members, which is critical for structure safety and economy. In this paper, 17 lap-spliced beams were tested to simulate flexural member bond conditions. The test parameters included UHPC compressive strength, cover depth, fiber content, splice length and stirrups in the spliced region. All specimens failed by the UHPC cover splitting crack. The beam without fiber experienced brittle splitting failure, while the beams with fibers experienced ductile splitting failure. The test results showed that increasing UHPC strength and cover depth could increase bond strength. The bond strength increased linearly with fiber content from 0% to 3% but decreased with 4% fiber content. Bond strength decreased linearly with splice length. Transverse reinforcement in the lap splice effectively improved bond strength; however, when the additional confinement reaches a limit, the increase in stirrups no longer improves UHPC bond stress. The experimental study established a formula for predicting UHPC bond splitting strength, considering the influence of the above parameters. The maximum limit of bond strength contributed by the stirrup was obtained. Finally, the development length calculation model applicable to UHPC was established by modifying the NC theory method. The proposed model was compared with current design methods, and the predicted values of the proposed model were closest to the experimental values.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Flexural behavior of hybrid concrete beams reinforced with ultra-high performance concrete bars
    Azad, Abul K.
    Hakeem, Ibrahim Y.
    CONSTRUCTION AND BUILDING MATERIALS, 2013, 49 : 128 - 133
  • [32] The Minimum Lap-spliced Length of the Reinforcement in the Steam Curing UHPC Bridge Deck Slab Joint
    Hwang, Hoon-Hee
    Park, Sung-Yong
    COMPOSITES RESEARCH, 2013, 26 (02): : 135 - 140
  • [33] Behavior of R.C. beams with lap-spliced hybrid bars under flexure
    Hatem M.
    Gnedy M.
    Helmy M.
    HBRC Journal, 2023, 19 (01) : 1 - 13
  • [34] Minimum shear reinforcement for ultra-high performance fiber reinforced concrete deep beams
    Yousef, Ahmed M.
    Tahwia, Ahmed M.
    Marami, Nagat A.
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 184 : 177 - 185
  • [36] Global bond behavior of enamel-coated rebar in concrete beams with spliced reinforcement
    Wu, Chenglin
    Chen, Genda
    Volz, Jeffery S.
    Brow, Richard K.
    Koenigstein, Michael L.
    CONSTRUCTION AND BUILDING MATERIALS, 2013, 40 : 793 - 801
  • [37] Global bond behavior of enamel-coated rebar in concrete beams with spliced reinforcement
    Wu, Chenglin
    Chen, Genda
    Volz, Jeffery S.
    Brow, Richard K.
    Koenigstein, Michael L.
    Construction and Building Materials, 2013, 40 : 793 - 801
  • [38] Mesoscopic analysis for shear behavior of reinforced ultra-high performance concrete beams
    Wang Z.
    Shao Z.
    Liang X.
    Cao Z.
    Wu K.
    Zhao N.
    Jianzhu Jiegou Xuebao/Journal of Building Structures, 2024, 45 (01): : 217 - 229
  • [39] Shear behavior of fiber-reinforced ultra-high performance concrete beams
    Meszoely, Tamas
    Randl, Norbert
    ENGINEERING STRUCTURES, 2018, 168 : 119 - 127
  • [40] Flexural Behavior of Ultra-High Performance Concrete Functionally Graded Composite Beams
    Yu G.
    Wang K.
    Wang Y.
    Wang J.
    Tiedao Xuebao/Journal of the China Railway Society, 2022, 44 (10): : 161 - 170