Torsional nystagmus recognition based on deep learning for vertigo diagnosis

被引:2
|
作者
Li, Haibo [1 ]
Yang, Zhifan [1 ]
机构
[1] Shanghai Univ Engn Sci, Coll Elect & Elect Engn, Shanghai, Peoples R China
关键词
torsional nystagmus; deep learning; classification and identification; convolution network; benign paroxysmal positional vertigo; DIABETIC-RETINOPATHY; CLASSIFICATION; VALIDATION; ALGORITHM; IMAGES; MODEL;
D O I
10.3389/fnins.2023.1160904
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
IntroductionDetection of torsional nystagmus can help identify the canal of origin in benign paroxysmal positional vertigo (BPPV). Most currently available pupil trackers do not detect torsional nystagmus. In view of this, a new deep learning network model was designed for the determination of torsional nystagmus. MethodsThe data set comes from the Eye, Ear, Nose and Throat (Eye&ENT) Hospital of Fudan University. In the process of data acquisition, the infrared videos were obtained from eye movement recorder. The dataset contains 24521 nystagmus videos. All torsion nystagmus videos were annotated by the ophthalmologist of the hospital. 80% of the data set was used to train the model, and 20% was used to test. ResultsExperiments indicate that the designed method can effectively identify torsional nystagmus. Compared with other methods, it has high recognition accuracy. It can realize the automatic recognition of torsional nystagmus and provides support for the posterior and anterior canal BPPV diagnosis. DiscussionOur present work complements existing methods of 2D nystagmus analysis and could improve the diagnostic capabilities of VNG in multiple vestibular disorders. To automatically pick BPV requires detection of nystagmus in all 3 planes and identification of a paroxysm. This is the next research work to be carried out.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Overview of behavior recognition based on deep learning
    Hu, Kai
    Jin, Junlan
    Zheng, Fei
    Weng, Liguo
    Ding, Yiwu
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (03) : 1833 - 1865
  • [32] Gesture Recognition Method Based On Deep Learning
    Du, Tong
    Ren, Xuemei
    Li, Huichao
    PROCEEDINGS 2018 33RD YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2018, : 782 - 787
  • [33] Building Recognition System Based on Deep Learning
    Bezak, Pavol
    2016 THIRD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND PATTERN RECOGNITION (AIPR), 2016,
  • [34] Occluded Face Recognition Based on the Deep Learning
    Wu, Gui
    Tao, Jun
    Xu, Xun
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 793 - 797
  • [35] Pedestrian Attribute Recognition Based on Deep Learning
    Yuan Peipei
    Zhang Liang
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (06)
  • [36] Recognition of objects based on deep learning in an RPAS
    Alvarez-Sanchez, Teodoro
    Alvarez-Cedillo, Jesus A.
    Herrera-Charles, Roberto
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XLIII, 2020, 11510
  • [37] Image Recognition Method Based on Deep Learning
    Jia, Xin
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 4730 - 4735
  • [38] Target Recognition and Location Based on Deep Learning
    Zhang, Jun
    Zhou, Zhangli
    Xing, Luyao
    Sheng, Xueliang
    Wang, Meiling
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 247 - 250
  • [39] Texture Recognition and Classification Based on Deep Learning
    Zhu, Gaoming
    Li, Bingchan
    Hong, Shuai
    Mao, Bo
    2018 SIXTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD), 2018, : 344 - 348
  • [40] Deep Learning based Gesture Recognition for Drones
    Lee, Min-Fan Ricky
    Chung, Ching-Yao
    Espinola, Adalberto Sergio Montania
    Vera, Marcelo Javier Gomez
    Caballero, Guillermo Federico Pallares
    2022 18TH IEEE/ASME INTERNATIONAL CONFERENCE ON MECHATRONIC AND EMBEDDED SYSTEMS AND APPLICATIONS (MESA 2022), 2022,