A hybrid vibration energy harvester with integrated piezoelectric and electrostatic devices

被引:1
|
作者
Yang, Chunlai [1 ,2 ]
Li, Henian [1 ,2 ]
Tang, Ye [1 ,2 ]
Wang, Hai [1 ,2 ]
Lu, Yimin [1 ,2 ]
机构
[1] Anhui Polytech Univ, Sch Mech Engn, People, Wuhu 241000, Peoples R China
[2] Anhui Key Lab Adv Numer Control & Serv Technol, Wuhu 241000, Peoples R China
关键词
piezoelectric; electrostatic; vibration energy; hybrid energy harvester;
D O I
10.35848/1347-4065/acdbaa
中图分类号
O59 [应用物理学];
学科分类号
摘要
In recent years, energy harvesting technology has become a promising power supply method for low-power wireless sensor nodes. According to the application requirements of energy acquisition, a piezoelectric and electrostatic hybrid vibration energy harvester (HVEH) is proposed in this paper. Compared with other vibration energy harvesters, the proposed hybrid harvester is easier to miniaturize and integrate into a MEMS. The electromechanical coupling model of the hybrid harvester is established. The optimal design of the proposed harvester is carried out based on numerical simulation. The optimal matching impedance of piezoelectric and electrostatic modules are calculated based on numerical simulation and validated through experiments, which are 80-90 k omega and 15-20 M omega, respectively. The output power of the HVEH is increased by 0.04%, 0.08%, 0.102%, and 0.097%, when the excitation acceleration is 0.1 g, 0.15 g, 0.2 g, and 0.25 g, respectively, compared with the single piezoelectric module.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Hybrid electromagnetic and piezoelectric vibration energy harvester with Gaussian white noise excitation
    Foupouapouognigni, O.
    Buckjohn, C. Nono Dueyou
    Siewe, M. Siewe
    Tchawoua, C.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 509 : 346 - 360
  • [22] Theoretical and experimental studies on piezoelectric-electromagnetic hybrid vibration energy harvester
    Deng, Licheng
    Wen, Zhiyu
    Zhao, Xingqiang
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2017, 23 (04): : 935 - 943
  • [23] Enhancement of vibration based piezoelectric energy harvester using hybrid optimization techniques
    Mangaiyarkarasi, P.
    Lakshmi, P.
    Sasrika, V
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2019, 25 (10): : 3791 - 3800
  • [24] Theoretical and experimental studies on piezoelectric-electromagnetic hybrid vibration energy harvester
    Licheng Deng
    Zhiyu Wen
    Xingqiang Zhao
    Microsystem Technologies, 2017, 23 : 935 - 943
  • [25] Frequency-tunable resonant hybrid vibration energy harvester using a piezoelectric cantilever with electret-based electrostatic coupling
    Feng, Yue
    Zhou, Zilong
    Luo, Haosun
    Wang, Ruiguo
    Han, Yanhui
    Xiong, Ying
    IET NANODIELECTRICS, 2023, 6 (02) : 46 - 56
  • [26] A review of broadband piezoelectric vibration energy harvester
    Xu Z.
    Shan X.
    Xie T.
    Xie, Tao, 2018, Chinese Vibration Engineering Society (37): : 190 - 199and205
  • [27] Micromachined Piezoelectric Energy Harvester with Low Vibration
    Park, Jong C.
    Park, Jae Y.
    ISAF: 2009 18TH IEEE INTERNATIONAL SYMPOSIUM ON THE APPLICATIONS OF FERROELECTRICS, 2009, : 406 - 411
  • [28] Modelling and Verification of Piezoelectric Vibration Energy Harvester
    Hadas, Zdenek
    Lan, Radek
    ADVANCED MECHATRONICS SOLUTIONS, 2016, 393 : 305 - 310
  • [29] Modeling and Simulation of a Piezoelectric Vibration Energy Harvester
    Kundu, Sushanta
    Nemade, Harshal B.
    INTERNATIONAL CONFERENCE ON VIBRATION PROBLEMS 2015, 2016, 144 : 568 - 575
  • [30] Regular and chaotic vibration in a piezoelectric energy harvester
    Grzegorz Litak
    Michael I. Friswell
    Sondipon Adhikari
    Meccanica, 2016, 51 : 1017 - 1025