Blow-up or Grow-up for the threshold solutions to the nonlinear Schrodinger equation

被引:0
|
作者
Gustafson, Stephen [1 ]
Inui, Takahisa [1 ,2 ]
机构
[1] Univ British Columbia, 1984 Math RD, Vancouver, BC V6T 1Z2, Canada
[2] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
基金
加拿大自然科学与工程研究理事会;
关键词
nonlinear Schrodinger equation; blow-up; grow-up; threshold; GROUND-STATE; CAUCHY-PROBLEM; SCATTERING; PROOF;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear Schrodinger equation with L-2-supercritical and H-1-subcritical power type nonlinearity. Duyckaerts and Roudenko [8] and Campos, Farah, and Roudenko [3] studied the global dynamics of the solutions with same mass and energy as that of the ground state. In these papers, finite variance is assumed to show the finite time blow-up. In the present paper, we remove the finite-variance assumption and prove a blow-up or grow-up result.
引用
收藏
页码:213 / 225
页数:13
相关论文
共 50 条
  • [21] Blow-up solutions with minimal mass for nonlinear Schrodinger equation with variable potential
    Pan, Jingjing
    Zhang, Jian
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 58 - 71
  • [22] ON COLLAPSING RING BLOW-UP SOLUTIONS TO THE MASS SUPERCRITICAL NONLINEAR SCHRODINGER EQUATION
    Merle, Frank
    Raphael, Pierre
    Szeftel, Jeremie
    DUKE MATHEMATICAL JOURNAL, 2014, 163 (02) : 369 - 431
  • [23] Blow-up of rough solutions to the fourth-order nonlinear Schrodinger equation
    Zhu, Shihui
    Yang, Han
    Zhang, Jian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6186 - 6201
  • [24] A sharp threshold of blow-up for coupled nonlinear Schrodinger equations
    Li, Xiaoguang
    Wu, Yonghong
    Lai, Shaoyong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (16)
  • [25] On the blow-up threshold for weakly coupled nonlinear Schrodinger equations
    Fanelli, Luca
    Montefusco, Eugenio
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (47) : 14139 - 14150
  • [26] A numerical scheme for the simulation of blow-up in the nonlinear Schrodinger equation
    Jiménez, S
    Llorente, IM
    Mancho, AM
    Pérez-García, VM
    Vázquez, L
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 134 (2-3) : 271 - 291
  • [27] Blow-up for the stochastic nonlinear Schrodinger equation with multiplicative noise
    De Bouard, A
    Debussche, A
    ANNALS OF PROBABILITY, 2005, 33 (03): : 1078 - 1110
  • [28] Dynamics of blow-up solutions for the Schrodinger-Choquard equation
    Shi, Cunqin
    Liu, Kun
    BOUNDARY VALUE PROBLEMS, 2018,
  • [29] Gradient blow-up of solutions to the Cauchy problem for the Schrodinger equation
    Sakbaev, V. Zh.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 283 (01) : 165 - 180
  • [30] LIMIT BEHAVIOR OF BLOW-UP SOLUTIONS FOR CRITICAL NONLINEAR SCHRODINGER EQUATION WITH HARMONIC POTENTIAL
    Li, Xiaoguang
    Zhang, Jian
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2006, 19 (07) : 761 - 771