Inner-coated highly selective thin film nanocomposite hollow fiber membranes for the mixture gas separation

被引:15
|
作者
Ingole, Pravin G. G. [1 ]
机构
[1] CSIR, North East Inst Sci & Technol, Engn Sci & Technol Div, Chem Engn Grp, 785006, Jorhat, Assam, India
关键词
APTMSH/MSH nanoparticles; interfacial polymerization; mixture gas separation; polysulfone (PSf) hollow fiber membrane; thin-film nanocomposite membrane; REVERSE-OSMOSIS MEMBRANES; WATER-VAPOR; FLUE-GAS; GRAPHENE OXIDE; CARBON-DIOXIDE; SYNTHETIC HECTORITES; COMPOSITE MEMBRANES; PERFORMANCE; NANOPARTICLES; PERMEATION;
D O I
10.1002/app.53553
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polyamide-based thin film nanocomposite (TFN) membranes were prepared by incorporating nanoparticles in an aqueous phase containing m-phenylenediamine (MPD) and an organic phase containing trimesoyl chloride (TMC) by interfacial polymerization (IP) method. The 3-aminopropyltrimethoxy silane grafted mesoporous synthetic hectorite (APTMSH) was synthesized and added in an aqueous monomer solution while the IP. In this work, the TFN layer interfacial compatibility has been enhanced by building the covalent bond between APTMSH and other two monomers by IP method. The coating of the TFN selective layer was done on the inner surface of polysulfone hollow fiber membranes. The interesting results were obtained for the binary mixture gas separation containing water vapor/N-2 and CO2/CH4. Improved gas permeance and selectivity have been obtained using APTMSH-incorporated TFN membranes. The developed TFN membranes have been characterized using several physicochemical methods. The results show that with the addition of APTMSH in MPD solution up to 0.5 w/w% the best water vapor permeance 2485 GPU and CO2 permeance 22.3 GPU were obtained along with water vapor/N-2 selectivity 725.5 and CO2/CH4 selectivity 26.68 respectively through APTMSH@TFN-3 membrane.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Production of super selective polysulfone hollow fiber membranes for gas separation
    Ismail, AF
    Dunkin, IR
    Gallivan, SL
    Shilton, SJ
    POLYMER, 1999, 40 (23) : 6499 - 6506
  • [12] High separation performance thin film composite and thin film nanocomposite hollow fiber membranes via interfacial polymerization for organic solvent nanofiltration
    Su, Jinghua
    Lv, Xinghua
    Li, Shuxuan
    Jiang, Yongxiang
    Liu, Shaoxiao
    Zhang, Xia
    Li, Honghai
    Su, Baowei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 278
  • [13] Highly VOC-selective hollow fiber membranes for separation by vapor permeation
    Obuskovic, G
    Majumdar, S
    Sirkar, KK
    JOURNAL OF MEMBRANE SCIENCE, 2003, 217 (1-2) : 99 - 116
  • [14] Gas separation performance of branched PIM-1 thin-film composite hollow fiber membranes
    Gutierrez-Hernandez, Sergio, V
    Pardo, Fernando
    Foster, Andrew B.
    Budd, Peter M.
    Zarca, Gabriel
    Urtiaga, Ane
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 363
  • [15] Development of carboxylated TiO2 incorporated thin film nanocomposite hollow fiber membranes for flue gas dehydration
    Baig, Muhammad Irshad
    Ingole, Pravin G.
    Choi, Won Kil
    Park, Seong Ryong
    Kang, Eun Chul
    Lee, Hyung Keun
    JOURNAL OF MEMBRANE SCIENCE, 2016, 514 : 622 - 635
  • [16] Graphene oxide interlayered thin-film nanocomposite hollow fiber nanofiltration membranes with enhanced aqueous electrolyte separation performance
    Tian, Long
    Jiang, Yongxiang
    Li, Shuxuan
    Han, Lihui
    Su, Baowei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 248 (248)
  • [17] Thin-film-composite hollow-fiber membranes for water vapor separation
    Ingole, Pravin G.
    Choi, Won Kil
    Lee, Gil Bong
    Lee, Hyung Keun
    DESALINATION, 2017, 403 : 12 - 23
  • [18] Thin-Film Composite Matrimid-Based Hollow Fiber Membranes for Oxygen/Nitrogen Separation by Gas Permeation
    Gonzalez-Revuelta, Daniel
    Fallanza, Marcos
    Ortiz, Alfredo
    Gorri, Daniel
    MEMBRANES, 2023, 13 (02)
  • [19] Thin-film composite hollow fiber membranes for ethylene/ethane separation in gas-liquid membrane contactor
    Malakhov, A. O.
    Bazhenov, S. D.
    Vasilevsky, V. P.
    Borisov, I. L.
    Ovcharova, A. A.
    Bildyukevich, A. V.
    Volkov, V. V.
    Giorno, L.
    Volkov, A. V.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 219 : 64 - 73
  • [20] Development of thin film nanocomposite membranes incorporated with sulfated β-cyclodextrin for water vapor/N2 mixture gas separation
    An, Xinghai
    Ingole, Pravin G.
    Choi, Won-Kil
    Lee, Hyung-Keun
    Hong, Seong Uk
    Jeon, Jae-Deok
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2018, 59 : 259 - 265