Multi-modal Representation Learning for Social Post Location Inference

被引:0
|
作者
Dai, RuiTing [1 ]
Luo, Jiayi [1 ]
Luo, Xucheng [1 ]
Mo, Lisi [1 ]
Ma, Wanlun [2 ]
Zhou, Fan [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610054, Peoples R China
[2] Swinburne Univ Technol, Melbourne, Vic, Australia
关键词
Social geographic location; multi-modal social post dataset; multi-modal representation learning; multi-head attention mechanism; PREDICTION;
D O I
10.1109/ICC45041.2023.10279649
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Inferring geographic locations via social posts is essential for many practical location-based applications such as product marketing, point-of-interest recommendation, and infector tracking for COVID-19. Unlike image-based location retrieval or social-post text embedding-based location inference, the combined effect of multi-modal information (i.e., post images, text, and hashtags) for social post positioning receives less attention. In this work, we collect real datasets of social posts with images, texts, and hashtags from Instagram and propose a novel Multi-modal Representation Learning Framework (MRLF) capable of fusing different modalities of social posts for location inference. MRLF integrates a multi-head attention mechanism to enhance location-salient information extraction while significantly improving location inference compared with single domain-based methods. To overcome the noisy user-generated textual content, we introduce a novel attention-based character-aware module that considers the relative dependencies between characters of social post texts and hashtags for flexible multimodel information fusion. The experimental results show that MRLF can make accurate location predictions and open a new door to understanding the multi-modal data of social posts for online inference tasks.
引用
收藏
页码:6331 / 6336
页数:6
相关论文
共 50 条
  • [1] Multi-modal Network Representation Learning
    Zhang, Chuxu
    Jiang, Meng
    Zhang, Xiangliang
    Ye, Yanfang
    Chawla, Nitesh, V
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3557 - 3558
  • [2] Mineral: Multi-modal Network Representation Learning
    Kefato, Zekarias T.
    Sheikh, Nasrullah
    Montresor, Alberto
    MACHINE LEARNING, OPTIMIZATION, AND BIG DATA, MOD 2017, 2018, 10710 : 286 - 298
  • [3] Scalable multi-modal representation learning networks
    Zihan Fang
    Ying Zou
    Shiyang Lan
    Shide Du
    Yanchao Tan
    Shiping Wang
    Artificial Intelligence Review, 58 (7)
  • [4] Fast Multi-Modal Unified Sparse Representation Learning
    Verma, Mridula
    Shukla, Kaushal Kumar
    PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL (ICMR'17), 2017, : 448 - 452
  • [5] Multi-modal Representation Learning for Successive POI Recommendation
    Li, Lishan
    Liu, Ying
    Wu, Jianping
    He, Lin
    Ren, Gang
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 441 - 456
  • [6] Joint Representation Learning for Multi-Modal Transportation Recommendation
    Liu, Hao
    Li, Ting
    Hu, Renjun
    Fu, Yanjie
    Gu, Jingjing
    Xiong, Hui
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 1036 - 1043
  • [7] Deep contrastive representation learning for multi-modal clustering
    Lu, Yang
    Li, Qin
    Zhang, Xiangdong
    Gao, Quanxue
    NEUROCOMPUTING, 2024, 581
  • [8] Supervised Multi-modal Dictionary Learning for Clothing Representation
    Zhao, Qilu
    Wang, Jiayan
    Li, Zongmin
    PROCEEDINGS OF THE FIFTEENTH IAPR INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS - MVA2017, 2017, : 51 - 54
  • [9] Contrastive Multi-Modal Knowledge Graph Representation Learning
    Fang, Quan
    Zhang, Xiaowei
    Hu, Jun
    Wu, Xian
    Xu, Changsheng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (09) : 8983 - 8996
  • [10] Enhanced Topic Modeling with Multi-modal Representation Learning
    Zhang, Duoyi
    Wang, Yue
    Abul Bashar, Md
    Nayak, Richi
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2023, PT I, 2023, 13935 : 393 - 404