Contrastive Multi-Modal Knowledge Graph Representation Learning

被引:8
|
作者
Fang, Quan [1 ]
Zhang, Xiaowei [2 ]
Hu, Jun [1 ]
Wu, Xian [3 ]
Xu, Changsheng [1 ,4 ]
机构
[1] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
[2] Zhengzhou Univ, Zhengzhou 450001, Peoples R China
[3] Tencent Med AI Lab, Beijing 100080, Peoples R China
[4] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Knowledge graph; multimedia; graph neural network; contrastive learning; NETWORK;
D O I
10.1109/TKDE.2022.3220625
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Representation learning of knowledge graphs (KGs) aims to embed both entities and relations as vectors in a continuous low-dimensional space, which has facilitated various applications such as link prediction and entity retrieval. Most existing KG embedding methods focus on modeling the structured fact triples independently and ignore the multi-type relations among triples as well as the variety of data types (e.g., texts and images) associated with entities in KGs, and thus fail to capture the complex and multi-modal information that is inherently inside the entity-relation triples. In this paper, we propose a novel approach for knowledge graph embedding named Contrastive Multi-modal Graph Neural Network (CMGNN), which can encapsulate comprehensive features from multi-modal content descriptions of entities and high-order connectivity structures. Specifically, CMGNN first learns entity embeddings from multi-modal content and then contrasts encodings from multi-relational local neighbors and high-order connectivities to obtain latent representations of entities and relations simultaneously. Experimental results demonstrate that CMGNN can effectively model the multi-modalities and multi-type structures in KGs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the tasks of link prediction and entity classification.
引用
收藏
页码:8983 / 8996
页数:14
相关论文
共 50 条
  • [1] Graph Embedding Contrastive Multi-Modal Representation Learning for Clustering
    Xia, Wei
    Wang, Tianxiu
    Gao, Quanxue
    Yang, Ming
    Gao, Xinbo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 1170 - 1183
  • [2] Deep contrastive representation learning for multi-modal clustering
    Lu, Yang
    Li, Qin
    Zhang, Xiangdong
    Gao, Quanxue
    NEUROCOMPUTING, 2024, 581
  • [3] MMKRL: A robust embedding approach for multi-modal knowledge graph representation learning
    Lu, Xinyu
    Wang, Lifang
    Jiang, Zejun
    He, Shichang
    Liu, Shizhong
    APPLIED INTELLIGENCE, 2022, 52 (07) : 7480 - 7497
  • [4] MMKRL: A robust embedding approach for multi-modal knowledge graph representation learning
    Xinyu Lu
    Lifang Wang
    Zejun Jiang
    Shichang He
    Shizhong Liu
    Applied Intelligence, 2022, 52 : 7480 - 7497
  • [5] Collaborative denoised graph contrastive learning for multi-modal recommendation
    Xu, Fuyong
    Zhu, Zhenfang
    Fu, Yixin
    Wang, Ru
    Liu, Peiyu
    INFORMATION SCIENCES, 2024, 679
  • [6] M 3 KGR: A momentum contrastive multi-modal knowledge graph learning framework for recommendation
    Wei, Zihan
    Wang, Ke
    Li, Fengxia
    Ma, Yina
    INFORMATION SCIENCES, 2024, 676
  • [7] CureGraph: Contrastive multi-modal graph representation learning for urban living circle health profiling and prediction
    Li, Jinlin
    Zhou, Xiao
    ARTIFICIAL INTELLIGENCE, 2025, 340
  • [8] Multi-modal Graph Contrastive Learning for Micro-video Recommendation
    Yi, Zixuan
    Wang, Xi
    Ounis, Iadh
    Macdonald, Craig
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 1807 - 1811
  • [9] CLMTR: a generic framework for contrastive multi-modal trajectory representation learning
    Liang, Anqi
    Yao, Bin
    Xie, Jiong
    Zheng, Wenli
    Shen, Yanyan
    Ge, Qiqi
    GEOINFORMATICA, 2024, : 233 - 253
  • [10] Representation and Fusion Based on Knowledge Graph in Multi-Modal Semantic Communication
    Xing, Chenlin
    Lv, Jie
    Luo, Tao
    Zhang, Zhilong
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (05) : 1344 - 1348