K-stability of birationally superrigid Fano 3-fold weighted hypersurfaces

被引:1
|
作者
Kim, In-Kyun [1 ]
Okada, Takuzo [2 ]
Won, Joonyeong [3 ]
机构
[1] Korea Inst Adv Study, June Huh Ctr Math Challenges E, Seoul 02455, South Korea
[2] Kyushu Univ, Fac Math, Fukuoka 8190385, Japan
[3] Ewha Womans Univ, Dept Math, Seoul 03760, South Korea
基金
新加坡国家研究基金会;
关键词
14J45; 32Q20; KAHLER-EINSTEIN METRICS; LOG CANONICAL THRESHOLDS; MORI FIBER STRUCTURES; VARIETIES; SINGULARITIES;
D O I
10.1017/fms.2023.87
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the alpha invariant of a quasi-smooth Fano 3-fold weighted hypersurface of index $1$ is greater than or equal to $1/2$. Combining this with the result of Stibitz and Zhuang [SZ19] on a relation between birational superrigidity and K-stability, we prove the K-stability of a birationally superrigid quasi-smooth Fano 3-fold weighted hypersurfaces of index $1$.
引用
收藏
页数:114
相关论文
共 50 条