On K-stability of Fano weighted hypersurfaces

被引:0
|
作者
Sano, Taro [1 ]
Tasin, Luca [2 ]
机构
[1] Kobe Univ, Grad Sch Sci, Dept Math, 1-1 Rokkodai,Nada Ku, Kobe 6578501, Japan
[2] Univ Milan, Dipartimento Matemat F Enriques, Via Cesare Saldini 50, I-20133 Milan, Italy
来源
ALGEBRAIC GEOMETRY | 2024年 / 11卷 / 02期
关键词
Fano varieties; K-stability; KAHLER-EINSTEIN METRICS; LOG CANONICAL THRESHOLDS; AUTOMORPHISMS;
D O I
10.14231/AG-2024-010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X subset of P(a(0), ... , a(n)) be a quasi-smooth weighted Fano hypersurface of degree d and index I-X such that a(i) vertical bar d for all i. If I-X = 1, we show that, under a suitable condition, the alpha-invariant of X is greater than or equal to dim X/(dim X + 1) and X is K-stable. This can be applied in particular to any X as above such that dim X <= 3. If X is general and I-X < dim X, then we show that X is K-stable. We also give a sufficient condition for the finiteness of automorphism groups of quasi-smooth Fano weighted complete intersections.
引用
收藏
页码:296 / 317
页数:22
相关论文
共 50 条