Eigenvalues of the Laplace-Beltrami operator on a prolate spheroid

被引:1
|
作者
Volkmer, Hans [1 ]
机构
[1] Univ Wisconsin Milwaukee, Dept Math Sci, Milwaukee, WI 53211 USA
关键词
Laplace-Beltrami operator; Prolate spheroid; Singular Sturm-Liouville problem; Generalized matrix eigenvalue problem;
D O I
10.1016/j.jde.2023.07.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Laplace-Beltrami operator on a prolate spheroid admits a sequence of eigenvalues. These eigenvalues are determined by a singular Sturm-Liouville problem. Properties of the eigenvalues are obtained using the minimum-maximum principle and the Prefer angle. In particular, eigenvalues are approximated by those of generalized matrix eigenvalue problems, and their behavior is studied when the eccentricity of the spheroid approaches 0 or 1.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:411 / 445
页数:35
相关论文
共 50 条