Graph Learning in Machine-Readable Plant Topology Data

被引:2
|
作者
Oeing, Jonas [1 ]
Brandt, Kevin [1 ]
Wiedau, Michael [2 ]
Tolksdorf, Gregor [2 ]
Welscher, Wolfgang [3 ]
Kockmann, Norbert [1 ]
机构
[1] TU Dortmund Univ, Dept Biochem & Chem Engn, Lab Equipment Design, Emil Figge Str 68, D-44227 Dortmund, Germany
[2] X Visual Technol GmbH, James Franck Str 15, D-12489 Berlin, Germany
[3] Evonik Operat GmbH, Paul Baumann Str 1, D-45128 Marl, Germany
关键词
Artificial intelligence; Data management; DEXPI; Graph neural networks; Piping & instrumentation diagram; Process industry;
D O I
10.1002/cite.202200223
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Digitalization shows that data and its exchange are indispensable for a versatile and sustainable process industry. There must be a shift from a document-oriented to a data-oriented process industry. Standards for the harmonization of data structures play an essential role in this change. In engineering, DEXPI (Data Exchange in the Process Industry) is already a well-developed, machine-readable data standard for describing piping and instrumentation diagrams (P&ID). In this publication, industry, software vendors, and research institutions have joined forces to demonstrate the current developments and potentials of machine-readable P&IDs in the DEXPI format combined with artificial intelligence. The aim is to use graph neural networks to learn patterns in machine-readable P&ID data, which results in the efficient engineering and development of new P&IDs.
引用
收藏
页码:1049 / 1060
页数:12
相关论文
共 50 条
  • [21] ON THE PRESERVATION OF HUMAN-READABLE AND MACHINE-READABLE RECORDS
    MALLINSON, JC
    INFORMATION TECHNOLOGY AND LIBRARIES, 1988, 7 (01) : 19 - 23
  • [22] MACHINE-READABLE INFORMATION IN THE LIBRARY
    ISAACSON, K
    RQ, 1982, 22 (02): : 164 - 170
  • [23] GENERATION AND USE OF MACHINE-READABLE DATA-BASES
    WILDE, DU
    ANNUAL REVIEW OF INFORMATION SCIENCE AND TECHNOLOGY, 1976, 11 : 267 - 298
  • [24] APPRAISING MACHINE-READABLE RECORDS
    DOLLAR, CM
    AMERICAN ARCHIVIST, 1978, 41 (04): : 423 - 430
  • [25] PaleoCodage-Enhancing machine-readable cuneiform descriptions using a machine-readable paleographic encoding
    Homburg, Timo
    DIGITAL SCHOLARSHIP IN THE HUMANITIES, 2021, 36 : 127 - 154
  • [26] PRIMARY DATA FOR HISTORICAL RESEARCH - NEW MACHINE-READABLE RESOURCES
    ROWE, JS
    RQ, 1982, 21 (04): : 351 - 356
  • [27] CITATION RULES FOR MACHINE-READABLE DATA IN CANADIAN HISTORICAL JOURNALS
    IGARTUA, JE
    HISTOIRE SOCIALE-SOCIAL HISTORY, 1994, 27 (53): : 161 - 163
  • [28] MACHINE-READABLE DNA-SEQUENCES
    LATHE, R
    FINDLAY, R
    NATURE, 1984, 311 (5987) : 610 - 610
  • [29] Stop squandering data: make units of measurement machine-readable
    Robert Hanisch
    Stuart Chalk
    Romain Coulon
    Simon Cox
    Steven Emmerson
    Francisco Javier Flamenco Sandoval
    Alistair Forbes
    Jeremy Frey
    Blair Hall
    Richard Hartshorn
    Pascal Heus
    Simon Hodson
    Kazumoto Hosaka
    Daniel Hutzschenreuter
    Chu-Shik Kang
    Susanne Picard
    Ryan White
    Nature, 2022, 605 : 222 - 224
  • [30] Stop squandering data: make units of measurement machine-readable
    Hanisch, Robert
    Chalk, Stuart
    Coulon, Romain
    Cox, Simon
    Emmerson, Steven
    Flamenco Sandoval, Francisco Javier
    Forbes, Alistair
    Frey, Jeremy
    Hall, Blair
    Hartshorn, Richard
    Heus, Pascal
    Hodson, Simon
    Hosaka, Kazumoto
    Hutzschenreuter, Daniel
    Kang, Chu-Shik
    Picard, Susanne
    White, Ryan
    NATURE, 2022, 605 (7909) : 222 - 224