Poisson points, resetting, universality and the role of the last item

被引:1
|
作者
Godreche, Claude [1 ]
机构
[1] Univ Paris Saclay, Inst Phys Theor, CNRS, CEA, F-91191 Gif Sur Yvette, France
关键词
universality; renewal processes; Poisson points; resetting;
D O I
10.1088/1751-8121/accee8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a stochastic process reset at random times, we discuss to what extent the probabilities of some orderings of observables associated with the intervals of time between resetting events are universal, i.e. independent of the choice of the observables, and in particular, to what extent universality depends on the choice of the distribution of these intervals. For Poissonian resetting, universality relies only on a combinatorial argument and on the statistical properties of Poisson points. For a generic distribution of time intervals between resets, universality no longer holds in general.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Stochastic search with Poisson and deterministic resetting
    Bhat, Uttam
    De Bacco, Caterina
    Redner, S.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [2] Diffusion with two resetting points
    Julian-Salgado, Pedro
    Dagdug, Leonardo
    Boyer, Denis
    PHYSICAL REVIEW E, 2024, 109 (02)
  • [3] UNIVERSALITY OF MAGNETIC TRICRITICAL POINTS
    FISHER, ME
    NELSON, DR
    PHYSICAL REVIEW B, 1975, 12 (01): : 263 - 266
  • [4] UNIVERSALITY CLASSES OF THE THETA-POINTS AND THETA'-POINTS
    POOLE, PH
    CONIGLIO, A
    JAN, N
    STANLEY, HE
    PHYSICAL REVIEW B, 1989, 39 (01): : 495 - 504
  • [6] Poisson item count techniques with noncompliance
    Wu, Qin
    Tang, Man-Lai
    Fung, Derrick Wing-Hong
    Tian, Guo-Liang
    STATISTICS IN MEDICINE, 2020, 39 (29) : 4480 - 4498
  • [7] THE VERY LAST SUBMIT ITEM
    CORTESI, D
    DR DOBBS JOURNAL, 1982, 7 (10): : 7 - &
  • [8] UNIVERSALITY AND TRICRITICAL POINTS IN 3 DIMENSIONS
    STEPHEN, MJ
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1980, 13 (04): : L83 - L86
  • [9] Universality and double critical end points
    Plascak, JA
    Landau, DP
    PHYSICAL REVIEW E, 2003, 67 (01):
  • [10] Gravitational allocation to Poisson points
    Chatterjee, Sourav
    Peled, Ron
    Peres, Yuval
    Romik, Dan
    ANNALS OF MATHEMATICS, 2010, 172 (01) : 617 - 671