HeuriSPAI: a heuristic sparse approximate inverse preconditioning algorithm on GPU

被引:2
|
作者
Gao, Jiaquan [1 ]
Chu, Xinyue [1 ]
Wang, Yizhou [1 ]
机构
[1] Nanjing Normal Univ, Sch Comp & Elect Informat, Jiangsu Key Lab NSLSCS, Qixia St, Nanjing 210023, Jiangsu, Peoples R China
关键词
Sparse approximate inverse; Preconditioning; Heuristic; CUDA; GPU; VARIANT; GMRES;
D O I
10.1007/s42514-023-00142-2
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, we present a new heuristic sparse approximate inverse (SPAI) preconditioning algorithm on graphics processing unit (GPU), called HeuriSPAI. For the proposed HeuriSPAI, there are the following novelties: (1) a heuristic method is proposed, which gives the potential candidate indices of the nonzero entries of the preconditioner in advance to guide the selection of the new indices, so as to improve the quality of the obtained preconditioner; and (2) a parallel framework of constructing the heuristic SPAI preconditioner on GPU is presented on the basis of the new proposed heuristic SPAI preconditioning algorithm; and (3) each component of the preconditioner is computed in parallel inside a group of threads. HeuriSPAI fuses the advantages of static and dynamic SPAI preconditioning algorithms, and alleviates the drawback of the existing dynamic SPAI preconditioning algorithms on GPU that are not suitable for large matrices. Experimental results show that HeuriSPAI is effective for large matrices, and outperforms the popular preconditioning algorithms in three public libraries, as well as a recent parallel static SPAI preconditioning algorithm.
引用
收藏
页码:160 / 170
页数:11
相关论文
共 50 条
  • [41] An effective sparse approximate inverse preconditioner for multilevel fast multipole algorithm
    Yang P.
    Liu J.
    Li Z.
    Progress In Electromagnetics Research M, 2020, 98 : 67 - 75
  • [42] Robust dropping criteria for F-norm minimization based sparse approximate inverse preconditioning
    Jia, Zhongxiao
    Zhang, Qian
    BIT NUMERICAL MATHEMATICS, 2013, 53 (04) : 959 - 985
  • [43] Robust dropping criteria for F-norm minimization based sparse approximate inverse preconditioning
    Zhongxiao Jia
    Qian Zhang
    BIT Numerical Mathematics, 2013, 53 : 959 - 985
  • [44] Incomplete Sparse Approximate Inverses for Parallel Preconditioning
    Anzt, Hartwig
    Huckle, Thomas K.
    Braeckle, Juergen
    Dongarra, Jack
    PARALLEL COMPUTING, 2018, 71 : 1 - 22
  • [45] Approximate sparsity patterns for the inverse of a matrix and preconditioning
    Huckle, T
    APPLIED NUMERICAL MATHEMATICS, 1999, 30 (2-3) : 291 - 303
  • [46] A note on adaptivity in factorized approximate inverse preconditioning
    Kopal, Jiri
    Rozloznik, Miroslav
    Tuma, Miroslav
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2020, 28 (02): : 149 - 159
  • [47] Approximate sparsity patterns for the inverse of a matrix and preconditioning
    TU München, Institut für Informatik, Arcisstr. 21, D-80290 München, Germany
    Appl Numer Math, 2 (291-303):
  • [48] Approximate inverse preconditioning for shifted linear systems
    Benzi, M
    Bertaccini, D
    BIT, 2003, 43 (02): : 231 - 244
  • [49] Approximate Inverse Preconditioning for Shifted Linear Systems
    Michele Benzi
    Daniele Bertaccini
    BIT Numerical Mathematics, 2003, 43 : 231 - 244
  • [50] The rate of convergence of explicit approximate inverse preconditioning
    Gravvanis, GA
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1996, 60 (1-2) : 77 - 89