Tuning nonequilibrium phase transitions with inertia

被引:13
|
作者
Omar, Ahmad K. [1 ,2 ]
Klymko, Katherine [3 ,4 ]
GrandPre, Trevor [5 ]
Geissler, Phillip L. [6 ,7 ]
Brady, John F. [8 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] NERSC, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[7] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA
[8] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2023年 / 158卷 / 07期
基金
美国国家科学基金会;
关键词
ACTIVE BROWNIAN PARTICLES; SURFACE-TENSION; SPHERES CRYSTALLIZATION; STATISTICAL-MECHANICS; PRESSURE; FLUCTUATIONS; SEPARATION; DIFFUSION; LIQUIDS; HYDRODYNAMICS;
D O I
10.1063/5.0138256
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In striking contrast to equilibrium systems, inertia can profoundly alter the structure of active systems. Here, we demonstrate that driven systems can exhibit effective equilibrium-like states with increasing particle inertia, despite rigorously violating the fluctuation-dissipation theorem. Increasing inertia progressively eliminates motility-induced phase separation and restores equilibrium crystallization for active Brownian spheres. This effect appears to be general for a wide class of active systems, including those driven by deterministic time-dependent external fields, whose nonequilibrium patterns ultimately disappear with increasing inertia. The path to this effective equilibrium limit can be complex, with finite inertia sometimes acting to accentuate nonequilibrium transitions. The restoration of near equilibrium statistics can be understood through the conversion of active momentum sources to passive-like stresses. Unlike truly equilibrium systems, the effective temperature is now density dependent, the only remnant of the nonequilibrium dynamics. This density-dependent temperature can in principle introduce departures from equilibrium expectations, particularly in response to strong gradients. Our results provide additional insight into the effective temperature ansatz while revealing a mechanism to tune nonequilibrium phase transitions.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Nonequilibrium phase transitions in sheared colloids
    Lahiri, R
    Ramaswamy, S
    PHYSICA A, 1996, 224 (1-2): : 84 - 92
  • [22] On the revealing of nonequilibrium phase transitions in water
    Pershin, S. M.
    Krutyansky, L. M.
    Luk'yanchenko, V. A.
    JETP LETTERS, 2011, 94 (02) : 121 - 125
  • [23] On the revealing of nonequilibrium phase transitions in water
    S. M. Pershin
    L. M. Krutyansky
    V. A. Luk’yanchenko
    JETP Letters, 2011, 94 : 121 - 125
  • [24] Coarsening dynamics of nonequilibrium phase transitions
    Bray, AJ
    SOFT AND FRAGILE MATTER: NONEQUILIBRIUM DYNAMICS, METASTABILITY AND FLOW, 2000, 53 : 205 - 236
  • [25] Current fluctuations in nonequilibrium discontinuous phase transitions
    Fiore, C. E.
    Harunari, Pedro E.
    Noa, C. E. Fernandez
    Landi, Gabriel T.
    PHYSICAL REVIEW E, 2021, 104 (06)
  • [26] Nonequilibrium Dynamics and Phase Transitions in Holographic Models
    Janik, Romuald A.
    Jankowski, Jakub
    Soltanpanahi, Hesam
    PHYSICAL REVIEW LETTERS, 2016, 117 (09)
  • [27] Quantum field theory for nonequilibrium phase transitions
    Kim, SP
    NON-LINEAR DYNAMICS AND FUNDAMENTAL INTERACTIONS, 2006, 213 : 277 - 291
  • [28] Nonequilibrium Quantum Phase Transitions in the Dicke Model
    Bastidas, V. M.
    Emary, C.
    Regler, B.
    Brandes, T.
    PHYSICAL REVIEW LETTERS, 2012, 108 (04)
  • [29] Solidification of Binary Alloys and Nonequilibrium Phase Transitions
    Radkevich, E. V.
    Vasil'eva, O. A.
    Sidorov, M. I.
    DOKLADY MATHEMATICS, 2019, 100 (03) : 571 - 576
  • [30] CRITICAL PHENOMENA IN NONEQUILIBRIUM PHASE-TRANSITIONS
    BROWNE, DA
    YU, B
    KLEBAN, P
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1990, 51 (03): : 194 - 202