Tuning nonequilibrium phase transitions with inertia

被引:13
|
作者
Omar, Ahmad K. [1 ,2 ]
Klymko, Katherine [3 ,4 ]
GrandPre, Trevor [5 ]
Geissler, Phillip L. [6 ,7 ]
Brady, John F. [8 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] NERSC, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[7] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA
[8] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2023年 / 158卷 / 07期
基金
美国国家科学基金会;
关键词
ACTIVE BROWNIAN PARTICLES; SURFACE-TENSION; SPHERES CRYSTALLIZATION; STATISTICAL-MECHANICS; PRESSURE; FLUCTUATIONS; SEPARATION; DIFFUSION; LIQUIDS; HYDRODYNAMICS;
D O I
10.1063/5.0138256
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In striking contrast to equilibrium systems, inertia can profoundly alter the structure of active systems. Here, we demonstrate that driven systems can exhibit effective equilibrium-like states with increasing particle inertia, despite rigorously violating the fluctuation-dissipation theorem. Increasing inertia progressively eliminates motility-induced phase separation and restores equilibrium crystallization for active Brownian spheres. This effect appears to be general for a wide class of active systems, including those driven by deterministic time-dependent external fields, whose nonequilibrium patterns ultimately disappear with increasing inertia. The path to this effective equilibrium limit can be complex, with finite inertia sometimes acting to accentuate nonequilibrium transitions. The restoration of near equilibrium statistics can be understood through the conversion of active momentum sources to passive-like stresses. Unlike truly equilibrium systems, the effective temperature is now density dependent, the only remnant of the nonequilibrium dynamics. This density-dependent temperature can in principle introduce departures from equilibrium expectations, particularly in response to strong gradients. Our results provide additional insight into the effective temperature ansatz while revealing a mechanism to tune nonequilibrium phase transitions.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Phase transitions in nonequilibrium systems
    Mukamel, D
    SOFT AND FRAGILE MATTER: NONEQUILIBRIUM DYNAMICS, METASTABILITY AND FLOW, 2000, 53 : 237 - 258
  • [2] Detection of nonequilibrium phase transitions in water
    Baturov, L. N.
    Govor, I. N.
    Obukhov, A. S.
    Plotnichenko, V. G.
    Dianov, E. M.
    JETP LETTERS, 2011, 93 (02) : 91 - 93
  • [3] Phase transitions in a nonequilibrium percolation model
    Clar, S
    Drossel, B
    Schenk, K
    Schwabl, F
    PHYSICAL REVIEW E, 1997, 56 (03): : 2467 - 2480
  • [4] Stochastic resonance at nonequilibrium phase transitions
    Skokov, V. N.
    Koverda, V. P.
    Vinogradov, A. V.
    Reshetnikov, A. V.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 430 : 65 - 72
  • [5] Detection of nonequilibrium phase transitions in water
    L. N. Baturov
    I. N. Govor
    A. S. Obukhov
    V. G. Plotnichenko
    E. M. Dianov
    JETP Letters, 2011, 93 : 91 - 93
  • [6] Nonequilibrium phase transitions in the early universe
    Kim, SP
    PARTICLES AND THE UNIVERSE, 2004, : 278 - 283
  • [7] Nonequilibrium phase transitions in epidemics and sandpiles
    Dickman, R
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 306 (1-4) : 90 - 97
  • [8] CONCERNING NONEQUILIBRIUM PHASE TRANSITIONS.
    Gogosov, V.V.
    Naletova, V.A.
    Chyong, Zha Bin'
    Shaposhnikova, G.A.
    Fluid mechanics. Soviet research, 1985, 14 (02): : 93 - 101
  • [9] THEORY OF NONEQUILIBRIUM PHASE-TRANSITIONS
    YELESIN, VF
    KAPAYEV, VV
    KOPAYEV, YV
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1976, 71 (08): : 714 - 726
  • [10] DURING NONEQUILIBRIUM PHASE-TRANSITIONS
    MCHEDLOVPETROSYAN, PO
    SLEZOV, VV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1987, (05): : 66 - 69