POWER-LAW L?VY PROCESSES, POWER-LAW VECTOR RANDOM FIELDS, AND SOME EXTENSIONS

被引:0
|
作者
Ma, Chunsheng [1 ]
机构
[1] Wichita State Univ, Dept Math Stat & Phys, Wichita, KS 67260 USA
关键词
Elliptically contoured random field; hyperbolic cosine ratio Lé vy process; hyperbolic sine ratio L?vy process; Linnik random field; subordinator; DISTRIBUTIONS;
D O I
10.1090/proc/16176
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces a power-law subordinator and a power-law Levy process whose Laplace transform and characteristic function are simply made up of power functions or the ratio of power functions, respectively, and proposes a power-law vector random field whose finite-dimensional character-istic functions consist merely of a power function or the ratio of two power functions. They may or may not have first-order moment, and contain Lin -nik, variance Gamma, and Laplace Levy processes (vector random fields) as special cases. For a second-order power-law vector random field, it is fully characterized by its mean vector function and its covariance matrix function, just like a Gaussian vector random field. An important feature of the power-law Levy processes (random fields) is that they can be used as the building blocks to construct other Levy processes (random fields), such as hyperbolic secant, cosine ratio, and sine ratio Levy processes (random fields).
引用
收藏
页码:1311 / 1323
页数:13
相关论文
共 50 条
  • [31] Random walks with power-law fluctuations in the number of steps
    Annibaldi, SV
    Hopcraft, KI
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (41): : 8635 - 8645
  • [32] Counting triangles in power-law uniform random graphs
    Gao, Pu
    van der Hofstad, Remco
    Southwell, Angus
    Stegehuis, Clara
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 28
  • [33] Non-searchability of random power-law graphs
    Duchon, Philippe
    Eggemann, Nicole
    Hanusse, Nicolas
    PRINCIPLES OF DISTRIBUTED SYSTEMS, PROCEEDINGS, 2007, 4878 : 274 - +
  • [34] CRITICAL WETTING IN THE PRESENCE OF POWER-LAW SURFACE FIELDS
    HENDERSON, JR
    PHYSICAL REVIEW B, 1987, 35 (13): : 7303 - 7305
  • [35] Nonparametric Power-Law Surrogates
    Moore, Jack Murdoch
    Yan, Gang
    Altmann, Eduardo G.
    PHYSICAL REVIEW X, 2022, 12 (02)
  • [36] AN EXPANSION FOR POWER-LAW WAVEFUNCTIONS
    JOHNSON, BR
    JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (11) : 2573 - 2580
  • [37] POWER-LAW SHOT NOISE
    LOWEN, SB
    TEICH, MC
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (06) : 1302 - 1318
  • [38] TABLES FOR POWER-LAW TRANSFORMATIONS
    HEALY, MJR
    TAYLOR, LR
    BIOMETRIKA, 1962, 49 (3-4) : 557 - &
  • [39] Driven power-law oscillator
    Schmelcher, Peter
    PHYSICAL REVIEW E, 2018, 98 (02)
  • [40] Nucleosynthesis in power-law cosmologies
    Kaplinghat, M
    Steigman, G
    Walker, TP
    PHYSICAL REVIEW D, 2000, 61 (10):