Advancing material property prediction: using physics-informed machine learning models for viscosity

被引:15
|
作者
Chew, Alex K. [1 ]
Sender, Matthew [2 ]
Kaplan, Zachary [1 ]
Chandrasekaran, Anand [1 ]
Chief Elk, Jackson [2 ]
Browning, Andrea R. [2 ]
Kwak, H. Shaun [2 ]
Halls, Mathew D. [3 ]
Afzal, Mohammad Atif Faiz [2 ]
机构
[1] Schrodinger Inc, New York, NY 10036 USA
[2] Schrodinger Inc, Portland, OR 97204 USA
[3] Schrodinger Inc, San Diego, CA 92121 USA
关键词
Classical molecular dynamics simulations; Organic molecules; Physical properties; Viscosity; Quantitative structure-property relationships; Machine learning; SURFACE-TENSION; DENSITY; CYCLOPENTANOL; SYSTEM;
D O I
10.1186/s13321-024-00820-5
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In materials science, accurately computing properties like viscosity, melting point, and glass transition temperatures solely through physics-based models is challenging. Data-driven machine learning (ML) also poses challenges in constructing ML models, especially in the material science domain where data is limited. To address this, we integrate physics-informed descriptors from molecular dynamics (MD) simulations to enhance the accuracy and interpretability of ML models. Our current study focuses on accurately predicting viscosity in liquid systems using MD descriptors. In this work, we curated a comprehensive dataset of over 4000 small organic molecules' viscosities from scientific literature, publications, and online databases. This dataset enabled us to develop quantitative structure-property relationships (QSPR) consisting of descriptor-based and graph neural network models to predict temperature-dependent viscosities for a wide range of viscosities. The QSPR models reveal that including MD descriptors improves the prediction of experimental viscosities, particularly at the small data set scale of fewer than a thousand data points. Furthermore, feature importance tools reveal that intermolecular interactions captured by MD descriptors are most important for viscosity predictions. Finally, the QSPR models can accurately capture the inverse relationship between viscosity and temperature for six battery-relevant solvents, some of which were not included in the original data set. Our research highlights the effectiveness of incorporating MD descriptors into QSPR models, which leads to improved accuracy for properties that are difficult to predict when using physics-based models alone or when limited data is available.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A Review of Physics-Informed Machine Learning in Fluid Mechanics
    Sharma, Pushan
    Chung, Wai Tong
    Akoush, Bassem
    Ihme, Matthias
    ENERGIES, 2023, 16 (05)
  • [32] Physics-informed machine learning for inorganic scintillator discovery
    Pilania, G.
    McClellan, K. J.
    Stanek, C. R.
    Uberuaga, B. P.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24):
  • [33] Probabilistic physics-informed machine learning for dynamic systems
    Subramanian, Abhinav
    Mahadevan, Sankaran
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 230
  • [34] Predicting glass structure by physics-informed machine learning
    Bodker, Mikkel L.
    Bauchy, Mathieu
    Du, Tao
    Mauro, John C.
    Smedskjaer, Morten M.
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [35] Parsimony as the ultimate regularizer for physics-informed machine learning
    J. Nathan Kutz
    Steven L. Brunton
    Nonlinear Dynamics, 2022, 107 : 1801 - 1817
  • [36] Parsimony as the ultimate regularizer for physics-informed machine learning
    Kutz, J. Nathan
    Brunton, Steven L.
    NONLINEAR DYNAMICS, 2022, 107 (03) : 1801 - 1817
  • [37] Physics-Informed Machine Learning for Optical Modes in Composites
    Ghosh, Abantika
    Elhamod, Mohannad
    Bu, Jie
    Lee, Wei-Cheng
    Karpatne, Anuj
    Podolskiy, Viktor A.
    ADVANCED PHOTONICS RESEARCH, 2022, 3 (11):
  • [38] Physics-Informed Extreme Learning Machine Lyapunov Functions
    Zhou, Ruikun
    Fitzsimmons, Maxwell
    Meng, Yiming
    Liu, Jun
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 1763 - 1768
  • [39] Physics-informed machine learning for moving load problems
    Kapoor, Taniya
    Wang, Hongrui
    Nunez, Alfredo
    Dollevoet, Rolf
    XII INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, EURODYN 2023, 2024, 2647
  • [40] Neural Oscillators for Generalization of Physics-Informed Machine Learning
    Kapoor, Taniya
    Chandra, Abhishek
    Tartakovsky, Daniel M.
    Wang, Hongrui
    Nunez, Alfredo
    Dollevoet, Rolf
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 12, 2024, : 13059 - 13067