Coarse-To-Fine Multiview Anomaly Coupling Network for Hyperspectral Anomaly Detection

被引:2
|
作者
Ma, Dan [1 ]
Chen, Minghao [1 ]
Yang, Yang [1 ]
Li, Beichen [1 ]
Li, Menglong [1 ]
Gao, Yuan [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral imaging; Feature extraction; Transformers; Task analysis; Unsupervised learning; Image reconstruction; Couplings; Axial attention; convolutional neural network (CNN); hyperspectral anomaly detection (HAD); remote sensing; unsupervised learning; RX-ALGORITHM;
D O I
10.1109/TGRS.2024.3362055
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The fundamental goal of hyperspectral anomaly detection (HAD) is the identification of pixels manifesting substantial deviations in spectral attributes when compared with their neighboring pixels. Nevertheless, the intrinsic attributes of hyperspectral images (HSIs), characterized by their high-dimensional essence and the interdependencies among spectral bands, frequently exert an influence on the efficacy of anomaly detection (AD). Furthermore, current detection algorithms often fall short in harnessing the inherent information encapsulated within HSI, thereby constraining the network's expressive potential. In response to these challenges, we introduce a multiview model tailored that amalgamates both global and local features for HAD. Specifically, the proposed method uses an unsupervised learning-based multiview network to simultaneously conduct feature analysis on both global and local attributes within HSI. The model incorporates a dual-component structure, featuring a global module using axial attention for comprehensive global attribute analysis, and a local module using a convolutional neural network (CNN) with residual connections to capture fine-grained local features. Subsequently, the global-local multiview anomaly coupling mechanism is applied to consolidate the strengths of distinct perspectives, resulting in the ultimate AD outcomes. Experimental evaluations are performed on seven public HSI datasets, demonstrating superior performance of the proposed method in comparison to other state-of-the-art approaches.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [41] Adversarial autoencoder for hyperspectral anomaly detection
    Du Q.
    Xie W.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (07): : 1105 - 1114
  • [42] Hyperspectral Anomaly Detection: A Dual Theory of Hyperspectral Target Detection
    Chang, Chein-, I
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [43] A coarse-to-fine strategy for multiclass shape detection
    Amit, Y
    Geman, D
    Fan, XD
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (12) : 1606 - 1621
  • [44] ROBUST ANOMALY DETECTION IN HYPERSPECTRAL IMAGING
    Frontera-Pons, J.
    Veganzones, M. A.
    Velasco-Forero, S.
    Pascal, F.
    Ovarlez, J. P.
    Chanussot, J.
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [45] Greedy Ensemble Hyperspectral Anomaly Detection
    Hossain, Mazharul
    Younis, Mohammed
    Robinson, Aaron
    Wang, Lan
    Preza, Chrysanthe
    JOURNAL OF IMAGING, 2024, 10 (06)
  • [46] Hyperspectral Anomaly Detection With Guided Autoencoder
    Xiang, Pei
    Ali, Shahzad
    Jung, Soon Ki
    Zhou, Huixin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [47] Anomaly detection in noisy hyperspectral imagery
    Riley, RA
    Newsom, RK
    Andrews, AK
    IMAGING SPECTROMETRY X, 2004, 5546 : 159 - 170
  • [48] Characterization of anomaly detection in hyperspectral imagery
    Chang, Chein-I
    Hsueh, Mingkai
    Sensor Review, 2006, 26 (02) : 137 - 146
  • [49] Iterative SpectralSpatial Hyperspectral Anomaly Detection
    Chang, Chein-, I
    Lin, Chien-Yu
    Chung, Pau-Choo
    Hu, Peter Fuming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [50] HYPERSPECTRAL ANOMALY DETECTION IN URBAN SCENARIOS
    Rejas Ayuga, J. G.
    Martinez Marin, R.
    Marchamalo Sacristan, M.
    Bonatti, J.
    Ojeda, J. C.
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7): : 111 - 116