A wind tunnel study of adverse pressure gradient impact on wind turbine wake dynamics

被引:2
|
作者
Bayron, Paul [1 ]
Kelso, Richard [1 ]
Chin, Rey [1 ]
机构
[1] Univ Adelaide, Sch Elect & Mech Engn, North Terrace, Adelaide, SA 5005, Australia
关键词
Pressure gradient; Hotwire anemometry; Wind tunnel study; Wind turbine wake; TERRAIN; LAYER;
D O I
10.1016/j.ijheatfluidflow.2023.109257
中图分类号
O414.1 [热力学];
学科分类号
摘要
Wind tunnel experiments were conducted to investigate the impact of an adverse streamwise pressure gradient on the wake dynamics of a small-scale horizontal-axis wind turbine. The study used high-frequency constant temperature hotwire anemometry to measure wake velocities up to 7 rotor diameters (������������) downstream. Two cases were studied: zero pressure gradient (ZPG) and adverse pressure gradient (APG). Experimental conditions included a Reynolds number based on the rotor diameter of ������������ approximate to 6.7 x 104 and an inflow velocity of 7 m/s. The results show significant differences between the ZPG and APG cases as the wake progresses downstream. The APG case exhibits a higher maximum velocity deficit in the far wake and a more distorted, oval-shaped wake than the ZPG case. Turbulence intensity trends also differ, with a decreasing trend in the ZPG case and an increasing trend in the APG case. Energy spectra analysis at specific wake locations offers insights into flow structure development. In both cases, small-scale (high-frequency) energy decreases as the wake advances, while large-scale (low-frequency) energy increases. Specifically, the adverse pressure gradient attenuates certain large-scale flow structures .1 ������/������������ is an element of [0.05, 0.2], corresponding to ������ is an element of [20, 100] Hz near the rotor tip height and narrows downstream. Additionally, in the APG case, energy increases in the lower half of the wake for flow structures ranging from .1 ������/������������ is an element of [0.04, 0.5], or ������ is an element of [10, 100] Hz near the rotor, narrowing further downstream. The results suggest that an adverse pressure gradient enhances turbulence and hinders velocity recovery toward freestream conditions in the wake of a wind turbine.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] WIND TUNNEL STUDY OF A GENERIC WIND TURBINE NACELLE MODEL
    Manolesos, Marinos
    Chaviaropoulos, Panagiotis
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2017, VOL 9, 2017,
  • [32] Wind turbine wakes on escarpments: A wind-tunnel study
    Dar, Arslan Salim
    Porte-Agel, Fernando
    RENEWABLE ENERGY, 2022, 181 : 1258 - 1275
  • [33] A Wind-Tunnel Simulation of the Wake of a Large Wind Turbine in a Weakly Unstable Boundary Layer
    Hancock, P. E.
    Zhang, S.
    BOUNDARY-LAYER METEOROLOGY, 2015, 156 (03) : 395 - 413
  • [34] Wind turbine wake: bridging the gap between large eddy simulations and wind tunnel experiments
    Gillyns, E.
    Buckingham, S.
    van Beeck, J.
    Winckelmans, G.
    WAKE CONFERENCE 2023, 2023, 2505
  • [35] A Wind-Tunnel Simulation of the Wake of a Large Wind Turbine in a Weakly Unstable Boundary Layer
    P. E. Hancock
    S. Zhang
    Boundary-Layer Meteorology, 2015, 156 : 395 - 413
  • [36] Wind turbine wake influence on the mixing of relative humidity quantified through wind tunnel experiments
    Obligado, Martin
    Cal, Raul Bayoan
    Brun, Christophe
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2021, 13 (02)
  • [37] Wind Tunnel Tests of Wake Characteristics for a Scaled Wind Turbine Model Based on Dynamic Similarity
    Yang, Wei
    Yu, Meng
    Yan, Bowen
    Huang, Guoqing
    Yang, Qingshan
    Zhang, Senqin
    Hong, Tianhao
    Zhou, Xu
    Deng, Xiaowei
    ENERGIES, 2022, 15 (17)
  • [38] Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel
    Dou, Bingzheng
    Guala, Michele
    Lei, Liping
    Zeng, Pan
    ENERGY, 2019, 166 : 819 - 833
  • [39] Study on Temperature Change of the Wake of Wind Turbine
    Ge, Li-tao
    Uchida, Takanori
    Ohya, Yuji
    INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND MATERIALS ENGINEERING (EEME 2014), 2014, : 86 - 89
  • [40] Wind turbine wake: a disturbance to wind resource in wind farms
    Aubrun, Sandrine
    INTERNATIONAL JOURNAL OF ENGINEERING SYSTEMS MODELLING AND SIMULATION, 2012, 4 (1-2) : 2 - 10