Stability and error estimation of θ-difference finite element method with C-Bezier basis

被引:0
|
作者
Sun, Lanyin [1 ]
Wen, Siya [1 ]
Su, Fangming [1 ]
机构
[1] Xinyang Normal Univ, Sch Math & Stat, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金;
关键词
theta-Difference finite element method; C-Bezier basis function; Stability and error estimation; Parabolic equations; PARABOLIC EQUATION; PROPAGATION; CONVERGENCE; WAVE;
D O I
10.1007/s12190-023-01943-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Partial differential equations (PDEs) can be solved numerically by finite element method (FEM). theta-difference FEM scheme carries out spatial discretization with FEM and temporal discretization with theta-difference scheme which is the generalization of forward Euler scheme, backward Euler scheme and Crank-Nicolson (CN) scheme. In this paper, C-Bezier basis is used to construct finite dimensional subspace of FEM and full-discrete scheme of parabolic equations is developed with theta-difference FEM scheme. In addition, the stability and error estimation of theta-difference FEM scheme are analyzed. While 0 < theta < 1/2, theta-difference FEM scheme is conditionally stable, and 1/2 <= theta <= 1, this scheme is unconditionally stable. Furthermore, some numerical examples are given to verify the effectiveness of theta-difference FEM scheme. It's worth noting that the numerical precision of C-Bezier basis is improved 3-5 orders of magnitude comparing with classical Lagrange basis and it also has higher numerical accuracy than CN finite difference method(FDM) and backward FDM.
引用
收藏
页码:4779 / 4804
页数:26
相关论文
共 50 条
  • [41] Error estimation for boundary element method
    Yano, K
    Tsuboi, H
    Tanaka, M
    Asahara, T
    NON-LINEAR ELECTROMAGNETIC SYSTEMS - ISEM '99, 2000, : 347 - 350
  • [42] A LEAST SQUARES RADIAL BASIS FUNCTION FINITE DIFFERENCE METHOD WITH IMPROVED STABILITY PROPERTIES
    Tominec, Igor
    Larsson, Elisabeth
    Heryudono, Alfa
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02): : A1441 - A1471
  • [43] Superconvergence and recovery type a posteriori error estimation for hybrid stress finite element method
    YanHong Bai
    YongKe Wu
    XiaoPing Xie
    Science China Mathematics, 2016, 59 : 1835 - 1850
  • [44] Error Estimation for the Computation of Force Using the Virtual Work Method on Finite Element Models
    Fu, W. N.
    Ho, S. L.
    IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (03) : 1388 - 1391
  • [45] A-posteriori error estimation and adaptivity for the finite element method using duality principles
    Cirak, F
    Ramm, E
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1999, 79 : S139 - S142
  • [46] Superconvergence and recovery type a posteriori error estimation for hybrid stress finite element method
    BAI YanHong
    WU YongKe
    XIE XiaoPing
    Science China(Mathematics), 2016, 59 (09) : 1835 - 1850
  • [47] THE FINITE-ELEMENT METHOD FOR PARABOLIC EQUATIONS .1. A POSTERIORI ERROR ESTIMATION
    BIETERMAN, M
    BABUSKA, I
    NUMERISCHE MATHEMATIK, 1982, 40 (03) : 339 - 371
  • [48] Superconvergence and recovery type a posteriori error estimation for hybrid stress finite element method
    Bai YanHong
    Wu YongKe
    Xie XiaoPing
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (09) : 1835 - 1850
  • [49] Flux recovery for Cut Finite Element Method and its application in a posteriori error estimation
    Capatina, Daniela
    He, Cuiyu
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (06): : 2759 - 2784
  • [50] A study on using hierarchical basis error estimates in anisotropic mesh adaptation for the finite element method
    Lennard Kamenski
    Engineering with Computers, 2012, 28 : 451 - 460