PAINWAVES: THE POTENTIAL OF MACHINE LEARNING TO DIFFERENTIATE CHRONIC PAIN COHORTS USING ELECTROENCEPHALOGRAPHY

被引:0
|
作者
Tsigarides, J. [1 ]
Rushbrooke, A. [2 ]
Bagnall, A. [2 ]
机构
[1] Univ East Anglia, Norwich Med Sch, Norwich, Norfolk, England
[2] Univ East Anglia, Comp Sci, Norwich, Norfolk, England
关键词
D O I
10.1136/annrheumdis-2023-eular.3902
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
POS0257
引用
收藏
页码:366 / 366
页数:1
相关论文
共 50 条
  • [21] Machine learning suggests sleep as a core factor in chronic pain
    Miettinen, Teemu
    Mantyselkae, Pekka
    Hagelberg, Nora
    Mustola, Seppo
    Kalso, Eija
    Loetsch, Jorn
    PAIN, 2021, 162 (01) : 109 - 123
  • [22] Predicting chronic postsurgical pain in breast cancer patients: a machine learning approach using XGboost
    Lan, Ling
    Li, Mo-Han
    Tan, Gang
    Zhang, Zhi-Yong
    Zhang, Yue-Lun
    Pei, Li-Jian
    Huang, Yu-Guang
    ANESTHESIA AND ANALGESIA, 2021, 133 (3S_SUPPL): : 60 - 61
  • [23] Diagnosis of Chronic Musculoskeletal Pain by Using Functional Near-Infrared Spectroscopy and Machine Learning
    Zeng, Xinglin
    Tang, Wen
    Yang, Jiajia
    Lin, Xiange
    Du, Meng
    Chen, Xueli
    Yuan, Zhen
    Zhang, Zhou
    Chen, Zhiyi
    BIOENGINEERING-BASEL, 2023, 10 (06):
  • [24] The potential and challenges of artificial intelligence and machine learning in the study of pain
    Sarzi-Puttini, P.
    Giorgi, V.
    CLINICAL AND EXPERIMENTAL RHEUMATOLOGY, 2023, 41 (06) : 1214 - 1215
  • [25] Machine Learning to Differentiate Between Positive and Negative Emotions Using Pupil Diameter
    Babiker, Areej
    Faye, Ibrahima
    Prehn, Kristin
    Malik, Aamir
    FRONTIERS IN PSYCHOLOGY, 2015, 6
  • [26] Electroencephalography based fatigue detection using a novel feature fusion and extreme learning machine
    Chen, Jichi
    Wang, Hong
    Hua, Chengcheng
    COGNITIVE SYSTEMS RESEARCH, 2018, 52 : 715 - 728
  • [27] Classifying Unstable and Stable Walking Patterns Using Electroencephalography Signals and Machine Learning Algorithms
    Soangra, Rahul
    Smith, Jo Armour
    Rajagopal, Sivakumar
    Yedavalli, Sai Viswanth Reddy
    Anirudh, Erandumveetil Ramadas
    SENSORS, 2023, 23 (13)
  • [28] A Machine Learning Approach Using Fractal Electroencephalography Features Predicts Response to Electroconvulsive Therapy
    Singh, Natashia
    Warsi, Mohammed A.
    JOURNAL OF ECT, 2017, 33 (03) : 216 - 216
  • [29] Automated detection of electroencephalography artifacts in human, rodent and canine subjects using machine learning
    Levitt, Joshua
    Nitenson, Adam
    Koyama, Suguru
    Heijmans, Lonne
    Curry, James
    Ross, Jason T.
    Kamerling, Steven
    Saab, Carl Y.
    JOURNAL OF NEUROSCIENCE METHODS, 2018, 307 : 53 - 59
  • [30] An automated approach for electroencephalography-based seizure detection using machine learning algorithms
    Patel, Vibha
    Bhatti, Dharmendra
    Ganatra, Amit
    Tailor, Jaishree
    INTERNATIONAL JOURNAL OF INTELLIGENT ENGINEERING INFORMATICS, 2022, 10 (04) : 332 - 358