An influence of radiation and magnetohydrodynamic flow of hybrid nanofluid past a stretching/shrinking sheet with mass transpiration

被引:9
|
作者
Maranna, Thippaiah [1 ]
Mahabaleshwar, Ulavathi Shetter [1 ]
Nayakar, Sunnapagutta Narasimhappa Ravichandra [2 ]
Sarris, Ioannis [3 ]
Souayeh, Basma [4 ,5 ]
机构
[1] Davangere Univ, Dept Math, Davangere, India
[2] Univ BDT Coll Engn, Dept Math, Davangere, India
[3] Univ West Attica, Dept Mech Engn, Athens, Greece
[4] King Faisal Univ, Coll Sci, Dept Phys, Al Hasa, Saudi Arabia
[5] Univ El Manar, Fac Sci Tunis, Dept Phys, Lab Fluid Mech, Tunis, Tunisia
关键词
HEAT-TRANSFER; SLIP BOUNDARY; MHD; SURFACE; LIQUID; SUCTION;
D O I
10.1002/zamm.202300140
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This research focuses on energy convention and mass transpiration in magnetohydrodynamic hybrid nanofluid (Al2O3-Cu) flows driven by a moving surface, which build numerous applications such as inducing hypothermia in cancer tumors, reducing bleeding in severe injuries, and performing magnetic resonance imaging are only a few medical applications applying magnetohydrodynamics A similarity transformation describes the representational construction of the steady two-dimensional nonlinear partial differential equations (PDEs) to a set of nonlinear ordinary differential equations (ODEs). Above equations subject to corresponding boundary conditions are analytically solved. Specifically, the energy equation with radiation effect is solved analytically using incomplete Gamma function. Moreover, the graphs included physical representations of the measurement can be found in this paper. In summary, our findings demonstrate that mass-transfer induced slip has a non-negligible impact on flows driven by a moving sheet. Mass transfer induced slip may even be able to dominate the flow driven effect of the moving sheet by changing the flow directions to flow against the sheet motion and also thermal radiation parameter increases as thermal boundary layer increases.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] HYBRID NANOFLUID FLOW PAST AN UNSTEADY POROUS STRETCHING/SHRINKING SHEET WITH NEWTONIAN HEATING IN A POROUS MEDIUM
    Khan, Umair
    Zaib, A.
    Ishak, A.
    Pop, I
    JOURNAL OF POROUS MEDIA, 2022, 25 (05) : 77 - 91
  • [32] Unsteady flow of a Maxwell hybrid nanofluid past a stretching/shrinking surface with thermal radiation effect
    N. A. Zainal
    R. Nazar
    K. Naganthran
    I. Pop
    Applied Mathematics and Mechanics, 2021, 42 : 1511 - 1524
  • [33] Numerical solution for nanofluid flow past a permeable stretching or shrinking sheet with slip condition and radiation effect
    Abd Elazem, Nader Y.
    Journal of Computational and Theoretical Nanoscience, 2015, 12 (10) : 3827 - 3834
  • [34] Unsteady flow of a Maxwell hybrid nanofluid past a stretching/shrinking surface with thermal radiation effect
    N.A.ZAINAL
    R.NAZAR
    K.NAGANTHRAN
    I.POP
    Applied Mathematics and Mechanics(English Edition), 2021, 42 (10) : 1511 - 1524
  • [35] Radiative Convective Nanofluid Flow Past a Stretching/Shrinking Sheet with Slip Effects
    Uddin, Md. Jashim
    Beg, O. Anwar
    Ismail, Ahmad Izani
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2015, 29 (03) : 513 - 523
  • [36] Mass transpiration on Newtonian flow over a porous stretching/shrinking sheet with slip
    Mahabaleshwar, U. S.
    Nagaraju, K. R.
    Sheremet, M. A.
    Baleanu, D.
    Lorenzini, E.
    CHINESE JOURNAL OF PHYSICS, 2020, 63 : 130 - 137
  • [37] Analytical Investigation of Magnetohydrodynamic Hybrid Nanofluid Flow Over a Permeable Shrinking Sheet
    Roy, Nepal Chandra
    Pop, Ioan
    JOURNAL OF NANOFLUIDS, 2024, 13 (03) : 686 - 693
  • [38] MHD flow of micropolar nanofluid over a stretching/shrinking sheet considering radiation
    Patel, Harshad R.
    Mittal, Akhil S.
    Darji, Rakesh R.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2019, 108
  • [39] MHD and Thermal Radiation Flow of Graphene Casson Nanofluid Stretching/Shrinking Sheet
    Mahabaleshwar U.S.
    Aly E.H.
    Vishalakshi A.B.
    International Journal of Applied and Computational Mathematics, 2022, 8 (3)
  • [40] Unsteady Stagnation Point Flow of Hybrid Nanofluid Past a Convectively Heated Stretching/Shrinking Sheet with Velocity Slip
    Zainal, Nurul Amira
    Nazar, Roslinda
    Naganthran, Kohilavani
    Pop, Ioan
    MATHEMATICS, 2020, 8 (10)