Predicting early postoperative PONV using multiple machine-learning- and deep-learning-algorithms

被引:9
|
作者
Zhou, Cheng-Mao [1 ,2 ]
Wang, Ying [3 ]
Xue, Qiong [3 ]
Yang, Jian-Jun [3 ]
Zhu, Yu [1 ,2 ]
机构
[1] Cent Peoples Hosp Zhanjiang, Dept Anaesthesiol, Zhanjiang, Guangdong, Peoples R China
[2] Cent Peoples Hosp Zhanjiang, Anesthesia & Big Data Res Grp, Zhanjiang, Guangdong, Peoples R China
[3] Zhengzhou Univ, Affiliated Hosp 1, Dept Anesthesiol Pain & Perioperat Med, Zhengzhou, Henan, Peoples R China
关键词
PONV; Machine learning; Deep learning; SVC; AUC; RISK-FACTORS; NAUSEA; SURGERY;
D O I
10.1186/s12874-023-01955-z
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objective PONV reduces patient satisfaction and increases hospital costs as patients remain in the hospital for longer durations. In this study, we build a preliminary artificial intelligence algorithm model to predict early PONV in patients. Methods We use R for statistical analysis and Python for the machine learning prediction model. Results Average characteristic engineering results showed that haloperidol, sex, age, history of smoking, and history of PONV were the first 5 contributing factors in the occurrence of early PONV. Test group results for artificial intelligence prediction of early PONV: in terms of accuracy, the four best algorithms were CNNRNN (0.872), Decision Tree (0.868), SVC (0.866) and adab (0.865); in terms of precision, the three best algorithms were CNNRNN (1.000), adab (0.400) and adab (0.868); in terms of AUC, the top three algorithms were Logistic Regression (0.732), SVC (0.731) and adab (0.722). Finally, we built a website to predict early PONV online using the Streamlit app on the following website: (https://zhouchengmao-streamlit-app-lsvc-ad-st-app-lsvc-adab-ponv-m9ynsb.streamlit.app/). Conclusion Artificial intelligence algorithms can predict early PONV, whereas logistic regression, SVC and adab were the top three artificial intelligence algorithms in overall performance. Haloperidol, sex, age, smoking history, and PONV history were the first 5 contributing factors associated with early PONV.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Alzheimer's Disease Detection Using Machine Learning and Deep Learning Algorithms
    Sentamilselvan, K.
    Swetha, J.
    Sujitha, M.
    Vigasini, R.
    INNOVATIONS IN BIO-INSPIRED COMPUTING AND APPLICATIONS, IBICA 2021, 2022, 419 : 296 - 306
  • [42] STAR-GALAXY CLASSIFICATION USING MACHINE LEARNING ALGORITHMS AND DEEP LEARNING
    Savyanavar, Amit Sadanand
    Mhala, Nikhil
    Sutar, Shiv H.
    INTERNATIONAL JOURNAL ON INFORMATION TECHNOLOGIES AND SECURITY, 2023, 15 (02): : 87 - 96
  • [43] Early detection of sepsis using machine learning algorithms
    El-Aziz, Rasha M. Abd
    Rayan, Alanazi
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 111 : 47 - 56
  • [44] Predicting Chronic Kidney Disease Using Machine Learning Algorithms
    Farjana, Afia
    Liza, Fatema Tabassum
    Pandit, Parth Pratim
    Das, Madhab Chandra
    Hasan, Mahadi
    Tabassum, Fariha
    Hossen, Md. Helal
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 1267 - 1271
  • [45] Predicting and Analyzing Absenteeism at Workplace Using Machine Learning Algorithms
    Rista, Amarildo
    Ajdari, Jaumin
    Zenuni, Xhemal
    2020 43RD INTERNATIONAL CONVENTION ON INFORMATION, COMMUNICATION AND ELECTRONIC TECHNOLOGY (MIPRO 2020), 2020, : 485 - 490
  • [46] Predicting cash holdings using supervised machine learning algorithms
    Şirin Özlem
    Omer Faruk Tan
    Financial Innovation, 8
  • [47] Predicting the recurrence of breast cancer using machine learning algorithms
    Amal Alzu’bi
    Hassan Najadat
    Wesam Doulat
    Osama Al-Shari
    Leming Zhou
    Multimedia Tools and Applications, 2021, 80 : 13787 - 13800
  • [48] Predicting Recreational Activity Participation Using Machine Learning Algorithms
    Lee, SeungBak
    Kang, Minsoo
    RESEARCH QUARTERLY FOR EXERCISE AND SPORT, 2023, 94 : A16 - A17
  • [49] Investigations on cardiovascular diseases and predicting using machine learning algorithms
    Ram Kumar, R. P.
    Polepaka, Sanjeeva
    Manasa, Vanam
    Palakurthy, Deepthi
    Annapoorna, Errabelli
    Dhaliwal, Navdeep
    Dhall, Himanshu
    Alzubaidi, Laith H.
    COGENT ENGINEERING, 2024, 11 (01):
  • [50] Predicting the recurrence of breast cancer using machine learning algorithms
    Alzu'bi, Amal
    Najadat, Hassan
    Doulat, Wesam
    Al-Shari, Osama
    Zhou, Leming
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (09) : 13787 - 13800